This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/btpr.1843 | DOI Listing |
The mid-wave multispectral detector combines the traditional spectrometer and infrared detector technologies to provide image information and spectral information at the same time, which has an important role in both civil and military fields. To solve the working band limitation and low energy utilization, this paper presents an integrated superlattice mid-wave multispectral hypersurface detector that can be used for computational multispectroscopy for the first time, which consists of photonic crystal (PC) plates of GaSb material, and uses PC microstructures to modulate the incident spectra, which can be used to reconstruct incident signals with computational multispectroscopy methods. In this paper, the finite difference time domain method (FDTD) is used to simulate the structural parameters of different PCs, and finally calculate the correlation coefficients of the transmission spectra of the different structures as well as the energy utilization rate.
View Article and Find Full Text PDFUnderwater optical imaging, especially in coastal waters, suffers from reduced spatial resolution and contrast by forward scattered light. With the increased number of hyper- and multi-spectral imaging applications, the effect of the point spread function (PSF) at different spectral bands becomes increasingly more relevant. In this work, extensive laboratory measurements of the PSF at 450, 500, 550, 600 and 650 nm in different turbidity have been carried out.
View Article and Find Full Text PDFThe technique of spectral polarization imaging (SPI) is a potent detection tool in various fields due to its ability to capture multi-dimensional information. However, existing SPI systems usually face challenges associated with architectural complexity and computational requirements, rendering them unsuitable for handheld, on-board, and real-time applications. Consequently, a compact single-shot multispectral polarization imager (CSMPI) is proposed, which employs a combined spectral-polarization encoding strategy to address the aforementioned issues.
View Article and Find Full Text PDFThis erratum corrects the affiliation addresses of authors of our paper [Opt. Express32, 43748 (2024).10.
View Article and Find Full Text PDFWe demonstrate PaCMAN, a ptychography algorithm that can reconstruct high quality images with broadband illumination sources while being robust to shot, detector, and parasitic noise. We extend prior monochromatization work to improve accuracy, especially for discrete spectra, and also demonstrate how PaCMAN can be converted into Ms. PaCMAN, a multi-spectral variant that outperforms multi-spectral ePIE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!