Background: Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with higher risk of prostate cancer (PCa). This study aimed to evaluate whether published SNPs improve the performance of a clinical risk-calculator in predicting prostate biopsy result.
Methods: Three hundred forty-six patients with a previous prostate biopsy (191 positive, 155 negative) were enrolled. After literature search, nine SNPs were selected for their statistically significant association with increased PCa risk. Allelic odds ratios were computed and a new logistic regression model was built integrating the clinical risk score (i.e., prior biopsy results, PSA level, prostate volume, transrectal ultrasound, and digital rectal examination) and a multilocus genetic risk score (MGRS). Areas under the receiver operating characteristic (ROC) curves (AUC) of the clinical score alone versus the integrated clinic-genetic model were compared. The added value of the MGRS was assessed using the Integrated Discrimination Improvement (IDI) and Net Reclassification Improvement (NRI) statistics.
Results: Predictive performance of the integrated clinico-genetic model (AUC = 0.781) was slightly higher than predictive performance of the clinical score alone (AUC = 0.770). The prediction of PCa was significantly improved with an IDI of 0.015 (P-value = 0.035) and a continuous NRI of 0.403 (P-value < 0.001).
Conclusions: The predictive performance of the clinical model was only slightly improved by adding MGRS questioning the real clinical added value with regards to the cost of genetic testing and performance of current inexpensive clinical risk-calculators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.22757 | DOI Listing |
World J Urol
January 2025
Department of Urology, Urooncology, Robot-assisted and Focal Therapy, University Hospital Magdeburg, Otto-von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
Background And Objectives: Radical prostatectomy is a standard treatment for prostate cancer, yet about 30% of patients experience rising biochemical markers within a decade post-surgery. Pelvic lymph node sampling during prostatectomy assesses potential lymph node metastases, but standard histological assessments, which typically examine only 2-3 tissue sections, often miss occult metastases. This study assesses the effectiveness of qPCR in detecting PSA coding KLK3 mRNA for identifying lymph node metastases post-prostatectomy and explores the correlation between PSA-mRNA and biochemical recurrence.
View Article and Find Full Text PDFMayo Clin Proc
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.
Fr J Urol
January 2025
Department of Urology, North Hospital, AP-HM, Marseille, France.
Introduction: A significant proportion of newly diagnosed prostate cancer (PCa) cases are slow growing with a low risk of metastatic progression. There is a lack of data concerning the optimal biopsy regimen for improving diagnosis yield in PI-RADS3 lesions. This study aimed to assess the diagnostic value of current biopsy regimens in PI-RADS 3 lesions and identify clinical predictors to improve clinically significant PCa (csPCa) detection.
View Article and Find Full Text PDFPLoS One
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.
Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data.
View Article and Find Full Text PDFEndocr Relat Cancer
January 2025
S Dehm, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.
Treatment for castration-resistant prostate cancer (CRPC) primarily involves the suppression of androgen receptor (AR) activity using androgen receptor signaling inhibitors (ARSIs). While ARSIs have extended patient survival, resistance inevitably develops. Mechanisms of resistance include genomic aberrations at the AR locus that reactivate AR signaling, or lineage plasticity that drives emergence of AR-independent phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!