Synthetic patch materials currently in use have major limitations, such as high susceptibility to infections and lack of contractility. Biological grafts are a novel approach to overcome these limitations, but do not always offer sufficient mechanical durability in early stages after implantation. Therefore, a stabilising structure based on resorbable magnesium alloys could support the biological graft until its physiologic remodelling. To prevent early breakage in vivo due to stress of non-determined forming, these scaffolds should be preformed according to the geometry of the targeted myocardial region. Thus, the left ventricular geometry of 28 patients was assessed via standard cardiac magnetic resonance imaging (MRI). The resulting data served as a basis for a finite element simulation (FEM). Calculated stresses and strains of flat and preformed scaffolds were evaluated. Afterwards, the structures were manufactured by abrasive waterjet cutting and preformed according to the MRI data. Finally, the mechanical durability of the preformed and flat structures was compared in an in vitro test rig. The FEM predicted higher durability of the preformed scaffolds, which was proven in the in vitro test. In conclusion, preformed scaffolds provide extended durability and will facilitate more widespread use of regenerative biological grafts for surgical left ventricular reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-013-5100-5DOI Listing

Publication Analysis

Top Keywords

preformed scaffolds
12
biological grafts
8
mechanical durability
8
left ventricular
8
mri data
8
durability preformed
8
vitro test
8
preformed
6
scaffolds
5
geometric adaption
4

Similar Publications

Injectable hyaluronate-based hydrogel with a dynamic/covalent dual-crosslinked architecture for bone tissue engineering: Enhancing osteogenesis and immune regulation.

Int J Biol Macromol

December 2024

Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China; National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory for Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China. Electronic address:

In orthopedic practice, accommodating irregular defects caused by trauma or surgery with traditional preformed bone graft substitutes is often challenging. As a result, injectable hydrogels with seed cells have garnered significant interest in bone repair due to their adaptability and minimally invasive properties. However, they cannot simultaneously achieve injectability and mechanical properties, providing a biophysical and biochemical environment for cell support.

View Article and Find Full Text PDF

Iron-molybdenum cofactor synthesis by a thermophilic nitrogenase devoid of the scaffold NifEN.

Proc Natl Acad Sci U S A

November 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid 28223, Spain.

The maturation and installation of the active site metal cluster (FeMo-co, FeSCMo--homocitrate) in Mo-dependent nitrogenase requires the protein product of the gene for production of the FeS cluster precursor (NifB-co, [FeSC]) and the action of the maturase complex composed of the protein products from the and genes. However, some putative diazotrophic bacteria, like sp. RS-1, lack the genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN.

View Article and Find Full Text PDF

RNA G-quadruplexes form scaffolds that promote neuropathological α-synuclein aggregation.

Cell

November 2024

Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan. Electronic address:

Article Synopsis
  • Synucleinopathies, like Parkinson's disease and dementia with Lewy bodies, are caused by the clumping of α-synuclein proteins, leading to nerve cell damage, but the exact mechanism behind this aggregation is still unclear.
  • The study shows that RNA G-quadruplexes form structures that promote α-synuclein aggregation, especially when calcium levels in the cell rise, accelerating the transition from a soluble to a gel-like state of the protein.
  • Using a light-controlled method to induce RNA G-quadruplex formation increases α-synuclein aggregation and neuronal dysfunction, but treating with 5-aminolevulinic acid can prevent this phase separation, reducing protein clumping and related motor
View Article and Find Full Text PDF

Vascularization is a major challenge in the field of tissue engineering and regenerative medicine. Mechanical factors have been demonstrated to play a fundamental role in vasculogenesis and angiogenesis and can affect the architecture of the generated vascular network. Through the regulation of mechanical factors in engineered tissues, various mechanical strategies can be used to optimize the preformed vascular network and promote its rapid integration with host vessels.

View Article and Find Full Text PDF

Aim: Retinal cell therapy modalities, in the category of advanced therapy medicinal products (ATMPs), are being developed to target several retinal diseases. Testing in large animal models (LAMs) is a crucial step in translating retinal ATMPs into clinical practice. However, challenges including budgetary and infrastructure constraints can hinder LAM research design and execution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!