A novel RARα/CAR-mediated mechanism for regulation of human organic solute transporter-β gene expression.

Am J Physiol Gastrointest Liver Physiol

Children's Hospital Colorado, Univ. of Colorado School of Medicine, 13123 E. 16th Ave., B065 Aurora, CO 80045.

Published: January 2014

The organic solute transporter-α/β (OSTα/β) is a heteromeric transporter that is essential for bile acid and sterol disposition and for the enterohepatic circulation. To better understand the mechanism underlying OST gene regulation, the effects of retinoic acid (RA) on OSTα/β gene expression were investigated. The results show a dose-dependent induction of OSTβ but not OSTα expression in both Huh7 and HepG2 cells by RA treatment. A novel functional RA receptor response element (RARE; so-called DR5) in the promoter of OSTβ gene was identified. The interaction of RARα/RXRα with the RARE was verified by electrophoretic mobility shift and chromatin immunoprecipitation assays and its functional importance by hOSTβ promoter activation in luciferase reporter assays. The studies demonstrated that the RARE is also a constitutive androstane receptor (CAR) binding site for OSTβ gene regulation. These results suggest that OSTβ is a target of both FXR-mediated (by binding to IR-1 element) and RARα- and CAR-mediated (by binding to DR5 element) gene regulation pathways. In summary, this study has uncovered a novel RARE (DR5) element in the promoter of OSTβ that binds RARα or CAR heterodimerized with RXRα and appears to function synergistically with the IR-1 element to provide maximal induction of OSTβ in response to RA. These findings demonstrate a role for RARα and CAR in controlling OSTβ expression levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920074PMC
http://dx.doi.org/10.1152/ajpgi.00138.2013DOI Listing

Publication Analysis

Top Keywords

gene regulation
12
organic solute
8
gene expression
8
induction ostβ
8
promoter ostβ
8
ostβ gene
8
ir-1 element
8
dr5 element
8
rarα car
8
ostβ
7

Similar Publications

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Planiliza haematocheilus, a teleostan species noted for its ecological adaptability and economic significance, thrives in both freshwater and marine environments. This study presents a novel chromosome-level genome assembly through Hi-C, PacBio CCS, and Illumina sequencing methods. The assembled genome has a final size of 651.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!