Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The shapes and sounds of isolated motor unit action potentials (MUAPs) in an electromyographic (EMG) signal provide a significant source of information for diagnosis, treatment and management of neuromuscular disorders. These parameters can be analyzed qualitatively by an expert or quantitatively by using pattern recognition techniques. Due to the advantages of quantitative EMG method, developing robust automated MUAP classifiers have been explored and several systems have been developed for this purpose by now, but the accuracy of the existing methods is not high enough to be used in clinical environments. In this paper, a novel classification strategy based on ensemble of support vector machines (SVMs) classifiers in hybrid serial/parallel architecture is proposed to determine the class label (myopathic, neuropathic, or normal) for a given MUAP. The developed system employs both time domain and time-frequency domain features of the MUAPs extracted from an EMG signal using an EMG signal decomposition system. Different classification strategies including single classifier and multiple classifiers with several subsets of features were investigated. Experimental results using a set of real EMG signals showed robust performance of multi-classifier methods proposed here. Of the methods studied, the multi-classifier that uses multiple features sets and a combination of both trainable and nontrainable fusion techniques to aggregate base classifiers showed the best performance with average accuracy of 97% which is significantly higher than the average accuracy of single SVM-based classifier system (i.e., 88%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2013.2291322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!