The E. coli mechanosensitive (MS) channel of small conductance (EcMscS) is the prototype of a diverse family of channels present in all domains of life. While EcMscS has been extensively studied, recent developments show that MscS may display some characteristics not widely conserved in this protein subfamily. With numerous members now electrophysiologically characterized, this subfamily of channels displays a breadth of ion selectivity with both anion and cation selective members. The selectivity of these channels may be relatively weak in comparison to voltage-gated channels but their selectivity mechanisms represent great novelty. Recent studies have identified unexpected residues important for selectivity in these homologs revealing different selectivity mechanisms than those employed by voltage gated K(+), Na(+), Ca(2+) and Cl(-) channels whose selectivity filters are housed within their transmembrane pores. This commentary looks at what is currently known about MscS subfamily selectivity and begins to unravel the potential physiological relevance of these differences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048343PMC
http://dx.doi.org/10.4161/chan.27107DOI Listing

Publication Analysis

Top Keywords

selectivity mechanisms
12
selectivity
8
channels selectivity
8
channels
6
mechanisms mscs-like
4
mscs-like channels
4
channels structure
4
structure function
4
function coli
4
coli mechanosensitive
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes.

Water Res

January 2025

Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:

Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.

View Article and Find Full Text PDF

Inflammatory bowel disease is a chronic inflammatory condition predominantly affecting the intestines, encompassing both ulcerative colitis and Crohn disease (CD). As one of the most common gastrointestinal disorders, CD's pathogenesis is closely linked with the intestinal microbiota. Recently, fecal microbiota transplantation (FMT) has gained attention as a potential treatment for CD, with the effective reestablishment of intestinal microecology considered a crucial mechanism of FMT therapy.

View Article and Find Full Text PDF

Objectives: Type 2 diabetes mellitus (T2DM) significantly deteriorates patients' quality of life (QOL). This study examined the dynamic interplay of factors that influence QOL in patients with T2DM, utilizing concepts from positive psychology and intrinsic mechanisms, to lay the groundwork for improving patient outcomes. Improving self-management behaviors is essential for effective disease management.

View Article and Find Full Text PDF

ZDHHC2 promoted antimycobacterial responses by selective autophagic degradation of B-RAF and C-RAF in macrophages.

Sci Adv

January 2025

Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.

S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!