Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The zebrafish (Danio rerio) has become an emergent model organism for translational approaches focused on the neurobiology of stress due to its genetic, neuroanatomical, and histological similarities with mammalian systems. However, despite the increasing number of studies using zebrafish, reports examining the impact of stress on relevant neurochemical parameters are still elementary when compared to studies using rodents. Additionally, it is important to further validate this model organism by comparing its stress response with those described in other species. Here, we evaluated the effects of an acute restraint stress (ARS) protocol on oxidative stress-related parameters in the zebrafish brain. Our data revealed that ARS significantly decreased catalase activity without altering the activity of superoxide dismutase. Oxidative stress was also indicated by increased levels of lipid peroxides. ARS significantly increased the levels of non-protein thiols, although significant changes in total reduced sulfhydryl content were not detected. These results suggest that ARS is an interesting strategy for evaluating the mechanisms underlying the neurochemical basis of the oxidative profile triggered by acute stressors in the zebrafish brain. Furthermore, this protocol may be suitable for screening new compounds with protective properties against oxidative stress, which plays an increasingly important role in many psychiatric disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2013.11.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!