Objective: Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High-fat overfeeding increases PPARGC1A DNA methylation in muscle in a birth weight dependent manner. However, PPARGC1A DNA methylation in subcutaneous adipose tissue (SAT) in LBW subjects has not previously been investigated. Our objective was to determine PPARGC1A DNA methylation and mRNA expression in basal and insulin-stimulated SAT from LBW and matched normal birth weight (NBW) subjects during control and high-fat overfeeding.
Materials/methods: Nineteen young healthy men with LBW and 26 NBW controls were studied after both a 5-day high-fat overfeeding and a control diet in a randomized crossover setting. DNA methylation was assessed with bisulfite sequencing and mRNA expression with quantitative real-time PCR.
Results: Following high-fat overfeeding, increased SAT PPARGC1A DNA methylation was observed in LBW subjects but not in NBW controls. Basal SAT PPARGC1A mRNA expression was unaffected by diet and similar in the two groups. However, LBW subjects showed an increased SAT PPARGC1A mRNA expression during insulin-stimulation. SAT PPARGC1A methylation correlated inversely with mRNA expression during insulin-stimulation.
Conclusions: The study adds to the increasing awareness of PPARGC1A DNA methylation being flexible and influenced by high-fat overfeeding in a birth weight dependent manner with muscle and fat responding differently. Further data are needed to understand the role of PPARGC1A DNA methylation in insulin resistance and developmental programming of T2D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.metabol.2013.10.003 | DOI Listing |
Int Rev Cell Mol Biol
January 2025
Posgrado en Ciencias Genómicas, Laboratorio de Patogenesis Celular y Molecular Humana y Veterinaria, Universidad Autónoma de la Ciudad de México, Ciudad de México, México. Electronic address:
The critical role of a subset of Human Papillomavirus in cervical cancer has been widely acknowledged and studied. Despite progress in our understanding of the viral molecular mechanisms of pathogenesis, knowledge of how infection with HPV oncogenic variants progresses from latent infection to incurable cancer has not been completely elucidated. In this paper we reviewed the relationship between HPV infection and epigenetic mechanisms such as histone acetylation and deacetylation, DNA methylation and non-coding RNAs associated with this infection and the carcinogenic process.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
January 2025
Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India. Electronic address:
With the rising global cancer burden, the dependency on chemotherapy also rises along with the complication of chemoresistance development. Studies on multi-drug resistant proteins provide a wide range of regulators, although the exact mechanism is not yet clearly understood. Epigenetic modifications play a vital role in the regulation of cellular processes and also in determining the efficacy of cancer therapy by modulating resistance development and tumor progression.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
January 2025
Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India. Electronic address:
Cancer is a leading cause of mortality worldwide. The evolving role of epigenetics and tumor microenvironments of cancer pose significant challenges to the management of cancer. Besides genetics, epigenetic changes play a crucial role in the alteration of cellular machinery, progression, metastasis, epithelial-mesenchymal transition, and chemoresistance.
View Article and Find Full Text PDFNeuropharmacology
January 2025
School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston UK. Electronic address:
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:
In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!