Validation of real-time PCR assays for bioforensic detection of model plant pathogens.

J Forensic Sci

Department of Entomology and Plant Pathology, Oklahoma State University, 127 Noble Research Center, Stillwater, OK, 74078.

Published: March 2014

The U.S. agricultural sector is vulnerable to intentionally introduced microbial threats because of its wide and open distribution and economic importance. To investigate such events, forensically valid assays for plant pathogen detection are needed. In this work, real-time PCR assays were developed for three model plant pathogens: Pseudomonas syringae pathovar tomato, Xylella fastidiosa, and Wheat streak mosaic virus. Validation included determination of the linearity and range, limit of detection, sensitivity, specificity, and exclusivity of each assay. Additionally, positive control plasmids, distinguishable from native signature by restriction enzyme digestion, were developed to support forensic application of the assays. Each assay displayed linear amplification of target nucleic acid, detected 100 fg or less of target nucleic acid, and was specific to its target pathogen. Results obtained with these model pathogens provide the framework for development and validation of similar assays for other plant pathogens of high consequence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1556-4029.12321DOI Listing

Publication Analysis

Top Keywords

plant pathogens
12
real-time pcr
8
pcr assays
8
model plant
8
assays plant
8
target nucleic
8
nucleic acid
8
assays
5
validation real-time
4
assays bioforensic
4

Similar Publications

The prevalence, distribution, and diversity of Salmonella isolated from pork slaughtering processors and retail outlets in the Shandong Province of China.

Meat Sci

December 2024

Laboratory of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong 271018, PR China. Electronic address:

Salmonella is a foodborne pathogen of global significance and is highly prevalent in pork. This study investigated the prevalence, contamination distribution, virulence genes and antibiotic resistance of Salmonella in 3 pork processors in the Shandong Province of China. Samples were collected from 13 different sampling sources across the slaughter procedures (600 samples) as well as at retail outlets supplied by these processors (45 samples).

View Article and Find Full Text PDF

The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense.

Cell Host Microbe

December 2024

CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China. Electronic address:

Plant stomata open in response to blue light, allowing gas exchange and water transpiration. However, open stomata are potential entry points for pathogens. Whether plants can sense pathogens and mount defense responses upon stomatal opening and how blue-light cues are integrated to balance growth-defense trade-offs are poorly characterized.

View Article and Find Full Text PDF

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

Transposon-triggered epigenetic chromatin dynamics modulate EFR-related pathogen response.

Nat Struct Mol Biol

December 2024

Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.

Infectious diseases drive wild plant evolution and impact crop yield. Plants, like animals, sense biotic threats through pattern recognition receptors (PRRs). Overly robust immune responses can harm plants; thus, understanding the tuning of defense response mechanisms is crucial for developing pathogen-resistant crops.

View Article and Find Full Text PDF

Pseudo-linkage or real-linkage of rust resistance genes in a wheat-Thinopyrum intermedium translocation line.

Theor Appl Genet

December 2024

Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.

We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!