Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electroluminescence (EL) in scanning tunneling microscopy (STM), which enables spectroscopy with submolecular spatial resolution, is shown to be due to radiative ionization with vibronic shape resonances that carry Fano line profiles. Since Fano progressions retain phase information, the spectra can be transformed to the time domain to reconstruct the vibronic motion. In effect, measurements within a molecule are accessible with joint space-time resolution at the Å-fs limit. We demonstrate this through EL-STM on the Jahn-Teller-active Zn-etioporphyrin radical anion and visualize the orbiting motion of scattered electrons upon sudden reduction and oxidation. We discuss the elements that enable spectroscopy with submolecular spatial resolution through EL-STM and the closely related STM-Raman process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn405335h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!