High resolution electronic spectroscopy of vibrationally hot bands of benzimidazole.

J Phys Chem A

Institut für Physikalische Chemie I, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany.

Published: December 2013

Rotationally resolved electronic spectra of seven vibrationally excited bands in the electronic spectrum of benzimidazole have been measured and analyzed. From the vibrational contributions to the rotational constants, an assignment of the hot bands could be made on the basis of anharmonic corrections to the harmonic normal modes and by using the information contained in the Duschinsky matrix calculated by second order coupled cluster (CC2) theory. Fluorescence emission and (hot) absorption spectra of benzimidazole from Jalviste and Treshchalov [Chem. Phys. 1993, 172, 325] have been simulated using Franck-Condon integrals obtained from CC2 optimized geometries and Hessians.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp408755qDOI Listing

Publication Analysis

Top Keywords

hot bands
8
high resolution
4
resolution electronic
4
electronic spectroscopy
4
spectroscopy vibrationally
4
vibrationally hot
4
bands benzimidazole
4
benzimidazole rotationally
4
rotationally resolved
4
resolved electronic
4

Similar Publications

Background: The study of the involvement of the cerebellum in learning and memory has become one of the recent hot topics in the field of cognitive neuroscience. Transcranial magnetic stimulation (TMS) of the cerebellum has gained increasing interest in the treatment of cognition-related disorders, making it necessary to determine the optimal parameters for cerebellar TMS. In this study, we aim to explore the effects of different frequencies of cerebellar repetitive TMS (rTMS) on working memory regulation and the associated electrophysiological changes.

View Article and Find Full Text PDF

A spatial triage of at-risk conifer forests to support seed collection efforts and sustainable forestry.

J Environ Manage

December 2024

Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

At-risk conifer stands growing in hot, arid conditions at low elevations may contain the most climate change-adapted seeds needed for sustainable forestry. This study used a triage framework to identify high-priority survey areas for Pinus ponderosa (Pipo) within a large region, by intersecting an updated range map with a map of seed zones and elevation bands (SZEBs). The framework assesses place-based climate change and potential wildfire risks by rank-order across 740 potential collection units.

View Article and Find Full Text PDF

Manipulating the symmetry of photon-dressed electronic states.

Nat Commun

December 2024

Department of Physics, Tsinghua University, Beijing, 100084, People's Republic of China.

Strong light-matter interaction provides opportunities for tailoring the physical properties of quantum materials on the ultrafast timescale by forming photon-dressed electronic states, i.e., Floquet-Bloch states.

View Article and Find Full Text PDF

Because of their sub picosecond temporal resolution, coherent Raman spectroscopies have been proposed as a viable extension of spontaneous Raman thermometry, to determine dynamics of mode specific vibrational energy content during out of equilibrium molecular processes. Here we show that the presence of multiple laser fields stimulating the vibrational coherences introduces additional quantum pathways, resulting in destructive interference. This ultimately reduces the thermal sensitivity of single spectral lines, nullifying it for harmonic vibrations and temperature independent polarizability.

View Article and Find Full Text PDF

In this study, a comparison of biofilm formation, extracellular polymeric substances (EPS) production, protein and polysaccharides estimation, and protein profiling through SDS-PAGE, FTIR, GC-MS, ESI-MS, SEM, and AFM analysis were done for EPS from epilithic bacteria BC1 obtained from monumental rock under normal room temperature and heat stressed condition. Heat stress (60 ± 2 °C) that simulates hot monumental rock surfaces during the summer season caused  bacteria BC1 to produce more EPS (8.56 g/L), biofilm, protein and polysaccharides, extra SDS-PAGE protein bands of different molecular weight than their control counterpart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!