Identification of proximal and distal axial ligands in Leishmania major pseudoperoxidase.

Biochemistry

Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.

Published: December 2013

Previous optical and electron paramagnetic resonance (EPR) spectroscopic studies of the newly discovered peroxynitrite scavenging pseudoperoxidase from Leishmania major (LmPP) suggested that ferric LmPP contained a six-coordinate low-spin (6cLS) heme with a thiolate ligand, presumably a cysteine, bound to its heme iron. To identify the axial ligands of LmPP, we exploit a systematic mutational analysis of potential heme ligands. On the basis of UV-visible and EPR spectroscopy, we report that the substitution of the proximal His206 with alanine in LmPP alters the 6cLS to a five-coordinate high spin (5cHS) form at pH 4.0 that has a spectrum characteristic of a Cys-ligated 5cHS derivative. The electronic absorption and EPR analysis of all alanine-substituted Cys and Met single mutants establish that when Cys107 is replaced with alanine, a new species appears that has a spectrum characteristic of a histidine-ligated 5cHS derivative at pH 4.0. Together, these results suggest that His206 and Cys107 act as the proximal and distal axial ligands in ferric LmPP, respectively. However, the electronic properties of reduced wild-type LmPP are similar to those of known 5cHS His-ligated heme proteins at pH 8.8, indicating that the thiolate bond was broken upon reduction. Furthermore, the wild-type protein was only partially reduced at pH 4.0, but the E105L mutant was completely reduced to form a 5cHS ferrous heme. These results imply that the presence of an acidic residue near the distal site may prevent reduction of the heme iron at acidic pH.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi401343tDOI Listing

Publication Analysis

Top Keywords

axial ligands
12
proximal distal
8
distal axial
8
leishmania major
8
ferric lmpp
8
heme iron
8
spectrum characteristic
8
5chs derivative
8
lmpp
6
heme
6

Similar Publications

Isostructural Dy(III) and Er(III) complexes [L12Ln(H2O)5][I]3·L12·(CH2Cl2) (Ln = Dy (1), Er (3)) and [L22Ln(H2O)5][I]3·L22·(CH2Cl2)2 (Ln = Dy (2), Er (4)), with distorted pentagonal bipyramidal geometry (D5h) around the central metal were synthesized by utilizing two bulky phosphonamide ligands, adamantyl phosphonamide, (Ad)P(O)(NHiPr)2 (L1) and carbazolyl phosphoramide (Cz)P(O)(NHiPr)2 (L2). The resultant complexes were investigated for their magnetic properties in order to elucidate the impact of modification of the coordinating P-O bond environment either by increasing steric bulk and/or introduction of a third P-N bond at the central phosphorus atom. Magnetic studies revealed substantial energy barriers (Ueff) of 640 K and 560 K for Dy compounds 1 and 2, respectively, rendering them as some of the best-performing air-stable SIMs amongst the class of SIMs with D5h symmetry.

View Article and Find Full Text PDF

Lanthanide (Substituted-)Cyclopentadienyl Bis(phosphinimino)methanediide Complexes: Synthesis and Characterization.

ACS Omega

December 2024

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei, P. R. China.

Design and synthesis of high-performance single-molecule magnets (SMMs) have long been a research focus. Inspired by the best dysprosium(III) metallocene SMMs and dysprosium(III) bis(methanediide) SMMs, we assumed dysprosium SMMs, which had electrical neutrality by combining the two types of ligands. As the Dy center is coordinated by one (substituted-)cyclopentadienyl (Cp) ligand and one methanediide ({C(PPhNSiMe)}) ligand on the axial sites, this ideal structure with linear C-Dy-Cp would strengthen the magnetic anisotropy and exhibit excellent SMM properties.

View Article and Find Full Text PDF

Multi-copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio-electrochemical applications. This study employs time-dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three-coordinate models and 1 four-coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination.

View Article and Find Full Text PDF

The catalytic efficiency of natural enzymes depends on the precise electronic interactions between active centers and cofactors within a three-dimensional (3D) structure. Single-atom nanozymes (SAzymes) attempt to mimic this structure by modifying metal active sites with molecular ligands. However, SAzymes struggle to match the catalytic efficiency of natural enzymes due to constraints in active site proximity, quantity, and the inability to simulate electron transfer processes driven by internal electronic structures of natural enzymes.

View Article and Find Full Text PDF

Arraying and Guest Inclusion of Soluble Metal-Organic Nanotubes Composed of Macrocyclic Paddle-Wheel Metal Complexes.

Angew Chem Int Ed Engl

December 2024

Nagoya University: Nagoya Daigaku, Department of Chemistry, Graduate School of Science, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN.

A new series of metal-organic nanotubes was constructed through one-dimensional assembly using molecular triangles or molecular squares composed of paddlewheel dirhodium complexes and bidentate axial ligands. The metal-organic nanotubes were significantly different from conventional solid metal-organic framework (MOF) motifs. They exhibit good solubility owing to the branched side chains at their periphery and demonstrate high orientation capabilities in thin films owing to their anisotropic structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!