The soilborne pathogen Plasmodiophora brassicae causes clubroot on Brassica crops, a common disease in many oilseed rape growing regions. Here, we investigate genetic diversity and geographic differentiation of P. brassicae populations from different regions in Germany. We compared three regions that differ in oilseed rape cropping history, oilseed rape acreage, and incidence of clubroot. These regions were either spatially separated or separated by the former inner German border. Plasmodiophora isolates were collected from 59 fields (29, 17, and 13 fields per region, respectively) and 174 amplified fragment length polymorphism (AFLP) markers were analyzed. Every field isolate showed a unique genotype pattern; that is, no genotype was shared among the regions and different fields. The mean gene diversity was 0.27, suggesting that P. brassicae is a genetically diverse species. The comparison of indexes (gene diversity, genotypic diversity, and linkage disequilibrium) between the regions does not support our hypotheses that cropping history, oilseed rape acreage, and incidence of clubroot affect these estimates. Principal component analysis (PCA), fixation index (FST), and generalized linear model (GLM) were suitable to specify regional differences. PCA revealed two clusters of isolates based on the geographic origin of the isolates and FST showed that these clusters were highly differentiated. Hypotheses about association of genotypes with different spatial scales were tested with GLM: the region, reflecting the cropping history, and the individual field had a significant effect on the AFLP pattern. We propose that individual field isolates represent a discrete population and that geographic differentiation results from low levels of gene flow due to the limited dispersal of this soilborne pathogen and from localized selection pressure as unifying force on the genotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-07-13-0210-RDOI Listing

Publication Analysis

Top Keywords

oilseed rape
20
history oilseed
12
cropping history
12
rape cropping
8
geographic origin
8
plasmodiophora brassicae
8
brassicae populations
8
soilborne pathogen
8
geographic differentiation
8
rape acreage
8

Similar Publications

Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape ().

View Article and Find Full Text PDF

A breeding method for Ogura CMS restorer line independent of restorer source in .

Front Genet

January 2025

National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.

The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.

View Article and Find Full Text PDF

Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.

View Article and Find Full Text PDF

The wilting and yellowing of leafy vegetables caused by spoilage bacteria resulted in serious resource wastage. This study investigated the efficacy of a combined lactic acid (LA) and tartaric acid (TA) treatment against four predominant spoilage bacteria (Erwinia persicina, Citrobacter freundii, Pseudomonas putida, and Pseudomonas punonensis) isolated from spinach and oilseed rape. Detailed analysis using Fourier-transform infrared spectroscopy, flow cytometry, scanning electron microscopy, and light microscopy revealed substantial cellular damage in the bacteria treated by LA and TA, including loss of intracellular material, and collapse of cellular morphology, as well as effective biofilm removal.

View Article and Find Full Text PDF

Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!