Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829917 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080930 | PLOS |
Mol Breed
January 2025
Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.
Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.
View Article and Find Full Text PDFMicroorganisms
December 2024
College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, China.
subsp. () is a Gram-negative bacterium responsible for citrus canker, a significant threat to citrus crops. ClpV is a critical protein in the type VI secretion system (T6SS) as an ATPase involved in bacterial motility, adhesion, and pathogenesis to the host for some pathogenic bacteria.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China. Electronic address:
Citrus bacterial canker has deleterious effects on global citrus production. The mitogen-activated protein kinase (MAPK) signaling cascade regulates plant defense against pathogen infection. Here, we identified 11 MAPKs in Atalantia buxifolia, a wild citrus species with high stress tolerance.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China.
Citrus canker, caused by subsp. (), poses a significant threat to citrus production worldwide. To develop effective and eco-friendly antibacterial agents, we designed and synthesized phenyl-hydrazonomalononitrile derivatives using a scaffold-hopping strategy.
View Article and Find Full Text PDFBMC Genomics
November 2024
College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
The sustainable development of the citrus industry is greatly affected by citrus canker, an important bacterial disease. To explore the transcriptional regulatory mechanism of citrus resistance to canker disease, this study used the susceptible Citrus sinensis cv. 'Newhall' and its citrus canker-resistant bud mutation variety 'Longhuitian' (LHT) as materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!