Fluvastatin interferes with hepatitis C virus replication via microtubule bundling and a doublecortin-like kinase-mediated mechanism.

PLoS One

Department of Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma, Oklahoma City, Oklahoma, United States of America ; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America ; Department of Veterans Affairs Medical Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America.

Published: July 2014

Hepatitis C virus (HCV)-induced alterations in lipid metabolism and cellular protein expression contribute to viral pathogenesis. The mechanism of pleiotropic actions of cholesterol-lowering drugs, statins, against HCV and multiple cancers are not well understood. We investigated effects of fluvastatin (FLV) on microtubule-associated and cancer stem cell marker (CSC), doublecortin-like kinase 1 (DCLK1) during HCV-induced hepatocarcinogenesis. HCV replication models, cancer cell lines and normal human hepatocytes were used to investigate the antiviral and antitumor effects of statins. FLV treatment resulted in induction of microtubule bundling, cell-cycle arrest and alterations in cellular DCLK1 distribution in HCV-expressing hepatoma cells. These events adversely affected the survival of liver-derived tumor cells without affecting normal human hepatocytes. FLV downregulated HCV replication in cell culture where the ATP pool and cell viability were not compromised. Pravastatin did not exhibit these effects on HCV replication, microtubules and cancer cells. The levels of miR-122 that regulates liver homeostasis and provides HCV genomic stability remained at steady state whereas DCLK1 mRNA levels were considerably reduced during FLV treatment. We further demonstrated that HCV replication was increased with DCLK1 overexpression. In conclusion, unique effects of FLV on microtubules and their binding partner DCLK1 are likely to contribute to its anti-HCV and antitumor activities in addition to its known inhibitory effects on 3-hydroxy-3-methylglutary-CoA reductase (HMGCR).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833963PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080304PLOS

Publication Analysis

Top Keywords

hcv replication
16
hepatitis virus
8
microtubule bundling
8
normal human
8
human hepatocytes
8
flv treatment
8
hcv
6
replication
5
effects
5
flv
5

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Background And Aims: Presence of active hepatitis C virus (HCV) infection may influence the outcome of patients treated for hepatocellular carcinoma (HCC), although this issue has never been adequately assessed in a large series of patients. The aim of this study was to evaluate whether the presence of active HCV affects the survival of patients treated for HCC.

Methods: This study assessed the outcome of 3123 anti-HCV-positive patients with HCC, subdivided according to the presence of active HCV infection or previous sustained virological response (SVR).

View Article and Find Full Text PDF

Targeted Degradation of HCV Polymerase by GalNAc-Conjugated ApTACs for Pan-Genotypic Antiviral Therapy with High Resistance Barriers.

J Med Chem

January 2025

Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-U.K. "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease. Although interferon-free direct-acting antivirals have led to significant advancements in the treatment of HCV infection, the high genetic variability of the virus and the emergence of acquired drug resistance pose potential threats to their effectiveness. In this study, we develop a broad-spectrum aptamer-based proteolysis targeting chimera, designated dNS5B, which effectively degrades both pan-genotypic NS5B polymerase and drug-resistant mutants through ubiquitin proteasome system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!