Effects of ankle joint cooling on peroneal short latency response.

J Sports Sci Med

Human Performance Research Center, Brigham Young University, Provo, UT, USA.

Published: November 2013

While cryotherapy has direct physiological effects on contractile tissues, the extent to which joint cooling affects the neuromuscular system is not well understood. The purpose of the study was to detect changes in ankle dynamic restraint (peroneal short latency response and muscle activity amplitude) during inversion perturbation following ankle joint cryotherapy. A 2x3 factorial design was used to compare reaction time and EMG amplitude data of treatment conditions (cryotherapy and control) across time (pre-treatment, post-treatment, and 30 min post-treatment). Thirteen healthy volunteers (age 23 ± 4 yrs, ht 1.76 ± 0.09 m, mass 78.8 ± 16.6 kg), with no history of lower extremity joint injury participated in this study. Surface EMG was collected from the peroneus longus (PL) of the dominant leg during an ankle inversion perturbation triggered while walking. Subjects walked the length of a 6.1 m runway 30 times. A trap door mechanism, inducing inversion perturbation, was released at heel contact during six randomly selected trials for each leg. Following baseline measurements, a 1.5 L bag of crushed ice was applied to the lateral ankle of subjects in the treatment group with an elastic wrap. A bag similar in weight and consistency was applied to the lateral ankle of subjects in the control group. A repeated measures ANOVA was used to compare treatment conditions across time (p < 0.05). Maximum inversion range of motion was 28.4 ± 1.8° for all subjects. No overall condition by time difference was detected (p > 0.05) for PL reaction time. Average RMS EMG, normalized to an isometric reference position, increased in the cryotherapy group at the 30 min post-treatment interval relative to the control group (p < 0.05). Joint cooling does not result in deficiencies in reaction time or immediate muscle activation following inversion perturbation compared to a control. Key PointsJoint cooling is used as a treatment intervention prior to activity. Whether ankle cooling will affect dynamic restraint during functional movement is unknown.Short latency response should be measured during functional movement instead of during stance to take into consideration alterations in motor drive.Joint cooling has no effect on peroneal short latency response, and joint cooling may result in increased short term peroneal activation.Joint cooling has no effect on the peroneus longus as a dynamic stabilizer during walking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827576PMC

Publication Analysis

Top Keywords

joint cooling
16
latency response
16
inversion perturbation
16
peroneal short
12
short latency
12
reaction time
12
ankle joint
8
cooling
8
cooling peroneal
8
dynamic restraint
8

Similar Publications

Ultrasonic welding (USW) is considered one of the most suitable methods to join semi-crystalline carbon fiber-reinforced thermoplastics (CFRTPs). The degree of crystallinity (DoC) of the semi-crystalline resin will affect the ultrasonic welding process by affecting the mechanical properties of the base material. In addition, ultrasonic welding parameters will affect the joint performance by affecting the DoC of the welded material at the welding interface.

View Article and Find Full Text PDF

A lightweight prosthetic hand with 19-DOF dexterity and human-level functions.

Nat Commun

January 2025

Institute of Humanoid Robots, School of Engineering Science, University of Science and Technology of China, Hefei, 230026, China.

A human hand has 23-degree-of-freedom (DOF) dexterity for managing activities of daily living (ADLs). Current prosthetic hands, primarily driven by motors or pneumatic actuators, fall short in replicating human-level functions, primarily due to limited DOF. Here, we develop a lightweight prosthetic hand that possesses biomimetic 19-DOF dexterity by integrating 38 shape-memory alloy (SMA) actuators to precisely control five fingers and the wrist.

View Article and Find Full Text PDF

Background: Reversed shoulder arthroplasty (rTSA) is often used to restore functionality in patients with joint arthropathy and dysfunctional rotator cuff. As rTSA changes the biomechanical properties of the shoulder, an altered movement pattern of arm and scapula is to be expected. Previous studies focused on changes of the scapulohumeral rhythm during functional elevation tasks.

View Article and Find Full Text PDF

Today, composite profiles of constant cross section are widely used in advanced engineering structures. The use of composite profiles in window and door structures can reduce thermal bridging and reduce energy consumption for heating and cooling. This article focuses on the production of new, thermoplastic-based structural pultruded profiles and their application in a PVC (polyvinylchloride) window structure as a reinforcement.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!