A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. | LitMetric

MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway.

Hepatology

Liver Cancer Institute & Zhongshan Hospital, Institutes of Biomedical Science, Fudan University, Shanghai, China. Key Laboratory of Carcinogenesis & Cancer Invasion, Ministry of Education, China.

Published: May 2014

Unlabelled: MicroRNA (miR)-26a can suppress tumor growth and metastasis of hepatocellular carcinoma (HCC). Since angiogenesis is important for tumor growth and metastasis, we investigated the possible roles of miR-26a in tumor angiogenesis. Down-regulation of miR-26a was found to correlate with an increased angiogenic potential of HCC. Through gain- and loss-of-function studies, miR-26a was demonstrated to significantly inhibit vascular endothelial growth factor A (VEGFA) expression in HCC cells and then suppress the promoting effects of HCC cells on in vitro proliferation, migration, and capillary tube formation of endothelial cells, as well as in vivo tumor angiogenesis of HCC. Hepatocyte growth factor (HGF) was identified as a target of miR-26a. HGF simulation antagonized the effects induced by miR-26a up-regulation. In contrast, silencing HGF induced similar effects to miR-26a. We further found that miR-26a exerted its antiangiogenesis function, at least in part, by inhibiting HGF-hepatocyte growth factor receptor (cMet) and its downstream signaling pathway, in turn, suppressing VEGFA production in HCC cells and impairing VEGFR2-signaling in endothelial cells. HCC patients who had high miR-26a, low HGF, low VEGFA, or low microvessel density (MVD) in tumor tissues had a better prognosis with longer overall survival (OS) and time to recurrence (TTR). In multivariate analysis, miR-26a, or in combination with HGF, was demonstrated to be an independent prognostic indicator for OS and TTR of HCC patients.

Conclusion: miR-26a could suppress tumor angiogenesis of HCC through HGF-cMet signaling, and it is a new hopeful therapeutic target and prognostic marker for HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.26941DOI Listing

Publication Analysis

Top Keywords

tumor angiogenesis
12
growth factor
12
hcc cells
12
mir-26a
11
hcc
10
hepatocellular carcinoma
8
hepatocyte growth
8
mir-26a suppress
8
suppress tumor
8
tumor growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!