Rosellinia necatrix megabirnavirus 1 (RnMBV1) with a bipartite dsRNA genome (dsRNA1 and dsRNA2) confers hypovirulence to its natural host, the white root rot fungus, and is thus regarded as a potential virocontrol (biocontrol) agent. Each segment has two large ORFs: ORF1 and partially overlapping ORF2 on dsRNA1 encode the major capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), whilst ORF3 and ORF4 on dsRNA2 encode polypeptides with unknown functions. Here, we report the biological and molecular characterization of this virus in the chestnut blight fungus, Cryphonectria parasitica, a filamentous fungus that has been used as a model for mycovirus research. Transfection with purified RnMBV1 particles into an RNA-silencing-defective strain (Δdcl-2) of C. parasitica and subsequent anastomosis with the WT strain (EP155) resulted in stable persistent infection in both host strains. However, accumulation levels in the two strains were different, being ~20-fold higher in Δdcl-2 than in EP155. Intriguingly, whilst RnMBV1 reduced both virulence and growth rate in Δdcl-2, it attenuated virulence without affecting significantly other traits in EP155. Western blot analysis using antiserum against recombinant proteins encoded by either ORF1 or ORF2 demonstrated the presence of a 250 kDa protein in purified virion preparations, suggesting that RdRp is expressed as a CP fusion product via a -1 frameshift. Antiserum against the ORF3-encoded protein allowed the detection of 150, 30 and 23 kDa polypeptides specifically in RnMBV1-infected mycelia. Some properties of an RnMBV1 mutant with genome rearrangements, which occurred after transfection of Δdcl-2 and EP155, were also presented. This study provides an additional example of C. parasitica serving as a versatile, heterologous fungus for exploring virus-host interactions and virus gene expression strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.058164-0DOI Listing

Publication Analysis

Top Keywords

rosellinia necatrix
8
necatrix megabirnavirus
8
cryphonectria parasitica
8
Δdcl-2 ep155
8
biological properties
4
properties expression
4
expression strategy
4
strategy rosellinia
4
megabirnavirus analysed
4
analysed experimental
4

Similar Publications

White root rot disease caused by Rosellinia necatrix is a growing issue in orchards, and biochar pyrolyzed from the pruned branch residues of fruit trees has potential as a soil amendment agent with a number of benefits, such as long-term carbon sequestration. However, the effects of pruned branch biochar on white root rot disease remain unclear. Therefore, we compared direct antagonism against R.

View Article and Find Full Text PDF

Characteristics of a Novel Zearalenone Lactone Hydrolase ZHRnZ and Its Thermostability Modification.

Int J Mol Sci

September 2024

State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanmingyuan, Beijing 100193, China.

Article Synopsis
  • - Zearalenone (ZEN) is a harmful toxin produced by fungi that contaminates grains and poses health risks to humans and animals, necessitating effective detoxification methods.
  • - Researchers discovered a new enzyme, ZHRnZ, capable of breaking down ZEN, with the best activity observed at pH 9.0 and 45 °C, achieving over 90% degradation of ZEN and related compounds in just 15 minutes.
  • - By creating 10 enzyme mutants, two variants (E122Q and E122R) showed improved heat stability, with E122R having 1.3 times greater catalytic efficiency than the original enzyme, making it a strong candidate for detoxifying ZEN in food
View Article and Find Full Text PDF

Effects of Exogenous Application of Methyl Jasmonate and Salicylic Acid on the Physiological and Molecular Response of 'Dusa' Avocado to .

Plant Dis

July 2024

Department of Genomics and Biotechnology (IFAPA Centro de Málaga), Fruticultura Subtropical y Mediterranea, IFAPA, Unidad Asociada al CSIC, 29140 Churriana, Málaga, Spain.

Methyl jasmonate (MeJA) and salicylic acid (SA) are important in mediating plant responses to abiotic and biotic stresses. MeJA and SA can act as elicitors by triggering plant defense responses similar to those induced by pathogens and may even provide long-term protection against them. Thus, exogenous application of MeJA and SA could protect susceptible avocado plants against white root rot (WRR) disease caused by the necrotrophic fungus , one of the main diseases affecting avocado orchards.

View Article and Find Full Text PDF

Rosellinia necatrix is a prevalent soil-borne plant-pathogenic fungus that is the causal agent of white root rot disease in a broad range of host plants. The limited availability of genomic resources for R. necatrix has complicated a thorough understanding of its infection biology.

View Article and Find Full Text PDF

Rhizoctonia solani is a widely disseminated phytopathogen that is found in the soil and is capable of harming many important species of crops. Here, analysis of the R. solani AG-4 HG III strain A14 led to the identification of a novel mycovirus assigned the tentative name "Rhizoctonia solani partitivirus A14" (RsPV-A14), which was subjected to sequencing and associated analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!