Commercially available extracellular matrix (ECM) hydrogel-coated culture plates have been used to study the relationship between the ECM microenvironment and stem cell behavior. However, it is unclear whether ECM-coated dishes mimic the natural ECM microenvironment because the architecture of the ECM is constructed of randomly distributed fibers. The purpose of this study was the production and confirmation of human engineered cell lines stably expressing large ECM proteins such as collagen I/II and fibronectin. First, large (over 10 kb) ECM vectors encoding human collagen I/II and fibronectin were constructed and the circular vectors were linearized. Second, the linear ECM vectors were introduced into immortalized human embryonic kidney cells using various transfection methods. The polyethylenimine and liposome methods showed higher efficiencies than electroporation for transfection of these large vectors. Third, human ECM engineered cells were established by stable integration of the vector into the genomic DNA and resulted in stable overexpression of mRNA and proteins. In summary, human engineered cell lines stably expressing large ECM proteins such as human collagen I/II and fibronectin were successfully prepared, and secretion of the ECM components into the surrounding environment was confirmed by immunocytochemistry. Thus, human ECM engineered cells naturally secreting ECM components could be valuable for studying the relationship between the native ECM microenvironment and stem cell behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-013-0294-0 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Department of Clinical Sciences, College of Veterinary Medicine, Columbus, OH, USA.
Background: Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, China. Electronic address:
This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.
View Article and Find Full Text PDFThe purpose of this study was to understand the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
The tumor microenvironment (TME) has drawn much interest recently in the search for innovative cancer therapeutics, especially in light of the growing body of evidence supporting the efficacy of immune checkpoint inhibitors (ICIs). The TME comprises various cell types within the extracellular matrix (ECM), such as immune cells, endothelial cells, and cancer-associated fibroblasts (CAFs). Throughout the malignancy, these cells interact with cancerous cells and with one another.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Physiology, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul, Turkey.
This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!