The purpose of this study is to investigate the interplay effect between dynamic MLC movement and tumor respiratory motion in volumetric-modulated arc therapy (VMAT)-based lung SBRT treatment delivered by the flattening filter-free (FFF) beam of a Varian TrueBeam machine. Six lung cancer patients with tumor motions ranging between 0.5-1.6 cm were recruited in this study. All patients underwent 4D-CT scan with audiocoaching. A two-arc VMAT plan was retrospectively generated using Varian's Eclipse planning system for each patient. To explicitly describe the interplay effect, the contributions of each control point in the original static VMAT plans to each respiratory phase were calculated, and then ten new VMAT plans corresponding to different respiratory phases were generated and imported back into Eclipse planning system to calculate the radiation dose based on the CT images of related respiratory phase. An in-house 4D dose calculation program with deformable registration capacity was used to calculate the accumulative 4D dose distribution of the targets. For all patients, the PTV coverage dropped significantly with increased respiratory motion amplitude. However, V100 and D90 of the GTV and GTV + 5 mm, which mimic the target with setup error of less than 5 mm, were either unchanged or slightly increased up to 1.2%, and the variations of their minimum doses were less than 3.2%. Our results indicated that for VMAT-based lung SBRT treatment delivered by FFF beam of TrueBeam machine, the impact of interplay effects on target coverage is insignificant, as long as a sufficient margin was given.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714645PMC
http://dx.doi.org/10.1120/jacmp.v14i6.4370DOI Listing

Publication Analysis

Top Keywords

respiratory motion
12
lung sbrt
12
sbrt treatment
12
treatment delivered
12
truebeam machine
12
motion volumetric-modulated
8
volumetric-modulated arc
8
flattening filter-free
8
vmat-based lung
8
fff beam
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!