Radiation awareness and protection of patients have been the fundamental responsibilities in diagnostic imaging since the discovery of x-rays late in 1895 and the first reports of radiation injury in 1896. In the ensuing years, there have been significant advancements in equipment that uses either x-rays to form images, such as fluoroscopy or computed tomography (CT), or the types of radiation emitted during nuclear imaging procedures (e.g., positron emission tomography [PET]). These advancements have allowed detailed and indispensable evaluation of a vast array of disorders. In fact, in 2001, CT and MRI were cited by physicians as the most significant medical innovations in the previous 3 decades. Rapid technological advancements in the last decade with CT, especially, have required imaging professionals to keep pace with increasingly complex technology to derive the maximum benefits of improved image acquisition and display techniques, in essence, the improved quality of the examination. It has also been challenging to fulfill the fundamental responsibilities of safety during this period of rapid growth (e.g., radiation protection, management of the risk of additional interventions driven by incidental findings, performing studies that were not indicated). The purpose of this paper is to define critical issues pertinent to ensuring patient safety through the appropriate assessment, recording, monitoring, and reporting of the radiation dose from CT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PTS.0b013e3182a8c2c4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!