Stereotactic radiosurgery (SRS) and radiotherapy (SRT) are intricate techniques that deliver a highly precise radiation dose to a localized target, usually a tumor. At our hospital, we perform SRS and SRT on brain tumors using a linear accelerator (linac) mounted with an external micro multi-leaf system. The Task Group TG-142 Report by the American Association of Physicists in Medicine recommends the coincidence of the radiation and mechanical isocenter to be within ±1 mm. The Winston-Lutz test is commonly used to verify the linac isocenter position: it has the advantages of being a simple method that uses a film or electronic portal imaging device (EPID). However, the film method requires a higher radiation dose, which makes it more time-consuming than the EPID method, and the results are highly dependent on the skills of the observer. The EPID method has certain advantages over the film method, but it has low resolution and can only be used for a few combinations of gantry and couch angles. This prompted us to develop an in-house-designed radiation receptor system based on digital radiography, using a photostimulable storage phosphor and automated analysis algorithm for Winston-Lutz test images using a template-matching technique based on cross-correlation coefficients. Our proposed method shows a maximum average absolute error of 0.222 mm (less than 2 pixels) for 0.5 mm and 1.0 mm displacement from the isocenter toward the inline and crossline directions. Our proposed method is thus potentially useful for verifying the Linac isocenter position with a small error and good reproducibility, as demonstrated by improved accuracy of evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.2013_jsrt_69.11.1266 | DOI Listing |
Front Oncol
October 2024
Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, United States.
J Med Phys
June 2024
Department of Radiation Oncology, Sir H.N Reliance Foundation and Research Centre, Mumbai, Maharashtra, India.
Recent decades have witnessed transformative advances in radiation physics and computer technology, revolutionizing the precision of radiation therapy. The adoption of intricate treatment techniques such as three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, volumetric-modulated arc therapy, and image-guided radiotherapy necessitates robust quality assurance (QA) programs. This study introduces the SunCHECK™ Machine (SCM), a web-based QA platform, presenting early results from its integration into a comprehensive QA program.
View Article and Find Full Text PDFJ Appl Clin Med Phys
October 2024
Radiation oncology department, Texas Oncology, Houston, Texas, USA.
Purpose: The aim of this study is to find optimal gantry, collimator, and couch angles for performing single isocenter, multiple target stereotactic radiosurgery (SIMT-SRS). Nineteen angle sets were tested across seven linear accelerators for radiation-isocenter coincidence and off-isocenter coincidence. The off-isocenter Winston-Lutz test was performed to evaluate the accuracy of isocenter alignment for each angle set, and optimal angle sets as well as maximum off-isocenter distance to target for each angle set was determined.
View Article and Find Full Text PDFPhys Med
April 2024
Radiation Therapy Department, CHR Metz-Thionville, Metz, France.
Purpose: Stereotactic radiotherapy (SRT) has transformed cancer treatment, especially for brain metastases. Ensuring accurate SRT delivery is crucial, with the Winston-Lutz test being an important quality control tool. Off-axis Winston-Lutz (OAWL) tests are designed for accuracy assessment, but most are limited to fixed angles and hampered by local-field shifts caused by suboptimal Multi-Leaf Collimator (MLC) positioning.
View Article and Find Full Text PDFDiagnostics (Basel)
February 2024
Department of Radiation Oncology, Yeungnam University Medical Center, Daegu 42415, Republic of Korea.
HyperArc is a preferred technique for treating brain metastases, employing a single isocenter for multiple lesions. Geometrical isocentricity in the TrueBeam linear accelerator with HyperArc is crucial. We evaluated machine performance checks (MPCs) as an alternative to the Winston-Lutz (WL) test to verify the treatment isocenter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!