Temperature-dependent Raman studies of aqueous copper(I) chloride complexes have been carried out up to 80 °C, along with supporting ab initio calculations for the species [CuCl(n)(H2O)m](1-n), n = 0-4 and hydration numbers m = 0-6. Normalized reduced isotropic Raman spectra were obtained from perpendicular and parallel polarization measurements, with perchlorate anion, ClO4(-), as an internal standard. Although the Raman spectra were not intense, spectra could be corrected by solvent baseline subtraction, to yield quantitative reduced molar scattering coefficients for the symmetric vibrational bands at 297 ± 3 and 247 ± 3 cm(-1). The intensity variations of these bands with concentration and temperature provided strong evidence that these arise from the species [CuCl2](-) and [CuCl3](2-), respectively. The results from ab initio calculations using density functional theory predict similar relative peak positions and intensities for the totally symmetric Cu-Cl stretching bands of the species [CuCl2(H2O)6](-) and [CuCl3(H2O)6](2-), in which the water is coordinated to the chloride ions. A less intense Raman band at 350 ± 10 cm(-1) is attributed to the symmetric Cu-Cl stretching mode of hydrated species [CuCl(H2O)](0) with six waters of hydration. Temperature- and concentration-independent quantitative Raman molar scattering coefficients (S) are reported for the [CuCl2](-) and [CuCl3](2-)species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp406580q | DOI Listing |
Mol Pharm
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.
Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.
Limosilactobacillus reuteri is a probiotic bacterium known for its numerous beneficial effects on human health and is commonly utilized in various dietary supplements. Previously, we encountered difficulties in isolating L. reuteri from retail dietary supplements containing complex probiotic compositions by using non-selective media such as de Man, Rogosa, and Sharpe (MRS) agar.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, Pennsylvania 19104, United States.
Photocatalytic C-H activation is an emerging area of research. While cerium chloride photocatalysts have been extensively studied, the role of alcohol additives in these systems remains a subject of ongoing discussion. It was demonstrated that the photocatalyst [NEt][CeCl] () produces •Cl and added alcohols exhibit zero-order kinetics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Texas A&M University, Chemistry, UNITED STATES OF AMERICA.
The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.
Four organotin(IV) carboxylate complexes; (CH)SnL (), CHSnL (), (CH)SnL () and (CH)SnL () are synthesized by the condensation reaction of organotin(IV) chlorides with sodium-4-chloro-2-methylphenoxyacetate (). The FT-IR spectra suggested bridging/chelating bidentate coordination of the ligand to the tin atom. Single-crystal XRD analysis authenticated the FT-IR findings for and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!