We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5-10) with one-to-six bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analogue and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Antiproliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917155 | PMC |
http://dx.doi.org/10.1021/jm401328u | DOI Listing |
Chembiochem
December 2024
State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
L-Threonine aldolase (L-TA) is a pyridoxal phosphate-dependent enzyme that catalyzes the reversible condensation of glycine and aldehydes to form β-hydroxy-α-amino acids. The combination of directed evolution and efficient high-throughput screening methods is an effective strategy for enhancing the enzyme's catalytic performance. However, few feasible high-throughput methods exist for engineering the C-stereoselectivity of L-TAs.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2024
Department of Pharmacology & Toxicology, Augusta University, Augusta, Georgia, United States.
Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
Glycinamide ribonucleotide formyltransferase (GARFT) is an important enzyme in the folate metabolism pathway, and chemical drugs targeting GARFT have been used in tumor treatments over the past few decades. The development of novel antimetabolism drugs that target GARFT with improved performance and superior activity remains an attractive strategy. Herein, we proposed a targeted double-template molecularly imprinted polymer (MIP) for enhancing macrophage phagocytosis and synergistic antimetabolic therapy.
View Article and Find Full Text PDFFASEB J
June 2024
Department of Neurology, Peking University First Hospital, Beijing, China.
Biochim Biophys Acta Proteins Proteom
July 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!