Emerging insights into the mechanistic link between α-synuclein and glucocerebrosidase in Parkinson's disease.

Biochem Soc Trans

*Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, U.S.A.

Published: December 2013

Mutations in the GBA1 gene, encoding the enzyme glucocerebrosidase, cause the lysosomal storage disorder GD (Gaucher's disease), and are associated with the development of PD (Parkinson's disease) and other Lewy body disorders. Interestingly, GBA1 variants are the most common genetic risk factor associated with PD. Although clinical studies argue a strong case towards a link between GBA1 mutations and the development of PD, mechanistic insights have been lacking. In the present article, we review recent findings that have provided some biochemical evidence to bridge this relationship, focusing on the molecular link between two proteins, α-synuclein and glucocerebrosidase, involved in PD and GD respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164968PMC
http://dx.doi.org/10.1042/BST20130158DOI Listing

Publication Analysis

Top Keywords

α-synuclein glucocerebrosidase
8
parkinson's disease
8
emerging insights
4
insights mechanistic
4
mechanistic link
4
link α-synuclein
4
glucocerebrosidase parkinson's
4
disease mutations
4
mutations gba1
4
gba1 gene
4

Similar Publications

Background: Ambroxol is an expectorant under study as a treatment for synucleinopathies, such as Parkinson's disease. It is a pharmacological chaperone of the lysosomal enzyme β-glucocerebrosidase (GCase), increasing this enzyme and subsequently reducing accumulation of alpha-synuclein. Although the mechanism of enhanced clearance is not fully understood, ambroxol stimulates lysosomal function through activation of transcription factor EB (TFEB), which drives hundreds of lysosomal genes.

View Article and Find Full Text PDF

Background: Dementia with Lewy bodies (DLB) is the second most common form of degenerative dementia in older people. The clinical feature of DLB includes cognitive impairment, visual hallucinations, parkinsonism, and fluctuating attention. Three genes, SNCA (-synuclein), APOE (apolipoprotein E), and GBA (glucosylceramidase), have been convincingly demonstrated to be associated with DLB.

View Article and Find Full Text PDF

Increased α-synuclein phosphorylation and oligomerization and altered enzymes in plasma of patients with Parkinson's disease.

Neuroscience

December 2024

Department of Neurobiology and National Clinical Research Center for Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory for Parkinson's Disease, Beijing, China. Electronic address:

The brain of patients with Parkinson's disease (PD) was characterized by increased phosphorylation and oligomerization of α-synuclein (α-syn) and altered activity of enzymes regulating α-syn phosphorylation and oligomerization. Whether increased α-syn phosphorylation and oligomerization as well as related enzyme changes can be detected in the plasma of PD patients remains unclear. Here, we showed that human α-syn proteins incubated in PD plasma formed more oligomerized α-syn (O-α-syn) and phosphorylated α-syn (pS-α-syn) than those in healthy control (HC) plasma.

View Article and Find Full Text PDF

Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study.

J Mol Med (Berl)

December 2024

Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France.

Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls.

View Article and Find Full Text PDF

Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!