Uptake of foreign mobile genetic elements is often detrimental and can result in cell death. For protection against invasion, prokaryotes have developed several defence mechanisms, which take effect at all stages of infection; an example is the recently discovered CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immune system. This defence system directly degrades invading genetic material and is present in almost all archaea and many bacteria. Current data indicate a large variety of mechanistic molecular approaches. Although almost all archaea carry this defence weapon, only a few archaeal systems have been fully characterized. In the present paper, we summarize the prerequisites for the detection and degradation of invaders in the halophilic archaeon Haloferax volcanii. H. volcanii encodes a subtype I-B CRISPR-Cas system and the defence can be triggered by a plasmid-based invader. Six different target-interference motifs are recognized by the Haloferax defence and a 9-nt non-contiguous seed sequence is essential. The repeat sequence has the potential to fold into a minimal stem-loop structure, which is conserved in haloarchaea and might be recognized by the Cas6 endoribonuclease during the processing of CRISPR loci into mature crRNA (CRISPR RNA). Individual crRNA species were present in very different concentrations according to an RNA-Seq analysis and many were unable to trigger a successful defence reaction. Recognition of the plasmid invader does not depend on its copy number, but instead results indicate a dependency on the type of origin present on the plasmid.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20130098DOI Listing

Publication Analysis

Top Keywords

successful defence
8
defence reaction
8
subtype i-b
8
system defence
8
defence
7
requirements successful
4
reaction crispr-cas
4
crispr-cas subtype
4
system
4
i-b system
4

Similar Publications

Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens.

Viruses

November 2024

Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.

Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny.

View Article and Find Full Text PDF

Biofilms are a well-known multifactorial virulence factor with a pivotal role in chronic bacterial infections. Their pathogenicity is determined by the combination of strain-specific mechanisms of virulence and the biofilm extracellular matrix (ECM) protecting the bacteria from the host immune defense and the action of antibacterials. The successful antibiofilm agents should combine antibacterial activity and good biocompatibility with the capacity to penetrate through the ECM.

View Article and Find Full Text PDF

Role of the Foliar Endophyte in the Resistance of Invasive to Disease and Abiotic Stress.

Microorganisms

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.

Plant-associated fungi often drive plant invasion success by increasing host growth, disease resistance, and tolerance to environmental stress. A high abundance of asymptomatically accumulated in the leaves of . In this study, we aimed to clarify whether three genetically distinct endophytic isolates (AX39, AX115, and AX198) activate invasive plant defenses against disease and environmental stress.

View Article and Find Full Text PDF

Molecular Interactions Between Plants and Aphids: Recent Advances and Future Perspectives.

Insects

November 2024

Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078, USA.

Aphids are small, notorious insect pests that negatively impact plant health and agricultural productivity through direct damage, such as sap-sucking, and indirectly as vectors of plant viruses. Plants respond to aphid feeding with a variety of molecular mechanisms to mitigate damage. These responses are diverse and highly dynamic, functioning either independently or in combination.

View Article and Find Full Text PDF

Local anesthetics are commonly used in various clinical settings for both prevention and symptom relief. Numerous clinical studies have demonstrated that intra-articular injections of local anesthetics achieve high success rates in orthopedic practices. However, several widely used local anesthetics, including bupivacaine, lidocaine, and ropivacaine, have been shown to exhibit toxicity to chondrocytes, with the underlying mechanisms of chondrotoxicity remaining poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!