Blister packing of copper hydroxide and titania nanoparticles on graphene and its recycling.

ACS Appl Mater Interfaces

Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 609-735, Republic of Korea.

Published: December 2013

Metal nanoparticles anchored on a graphene substrate find many applications such as sensors, catalysts, lithium ion batteries, etc. However, to date, graphene-metal nanohybrids have been synthesized by either covalent or ionic interactions between the graphene substrate and the metal nanoparticles. In this manuscript, we report a green and facile method to "bubble pack" metal nanoparticles on a graphene substrate by a simple process utilizing eco-friendly ionic liquids in conjunction with microwave heating. Copper nanoparticles bubble packed on graphene showed enhanced glucose sensing when compared to covalently bonded copper/graphene hybrids. Titania nanoparticles bubble packed on graphene when applied as anode materials in lithium ion batteries exhibited two times more lithium ion retention when compared to covalently bonded titania/graphene hybrids. "End of life" disposal of nanomaterials into the environment is a growing area of concern in recent days. One way of dealing with this problem is to extend the life cycle of nanomaterials by reusing the nanomaterials in multiple applications. In this report, we also show the recyclability of our novel bubble packaging material, by etching out the metal nanoparticles resulting in a unique 3D hierarchical graphene nanocup decorated graphene. The applicability of this recycled material in super capacitors is also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am402935nDOI Listing

Publication Analysis

Top Keywords

metal nanoparticles
16
graphene substrate
12
lithium ion
12
titania nanoparticles
8
graphene
8
nanoparticles graphene
8
ion batteries
8
nanoparticles bubble
8
bubble packed
8
packed graphene
8

Similar Publications

Precision Metal Nanoclusters Meet Proteins: Crafting Next-Gen Hybrid Materials.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.

View Article and Find Full Text PDF

Schistosomiasis, caused by Schistosoma worms, is a major neglected tropical disease in Africa, this disease is ranked as second after malaria. Nanotechnology is important for treating schistosomiasis while minimizing chemotherapy side effects. The current investigate aimed to assess the effectiveness of biosynthesized zinc oxide nanoparticles (ZnO NPs), which were used for the first time in an attempt to find alternative treatment for schistosomiasis and synthesized by Origanum majorana, and to compare them with praziquantel (PZQ), the only chemical treatment approved by the World Health Organization.

View Article and Find Full Text PDF

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

High-Performance Hydrogen Sensing at Room Temperature via Nb-Doped Titanium Oxide Thin Films Fabricated by Micro-Arc Oxidation.

Nanomaterials (Basel)

January 2025

Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.

Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.

View Article and Find Full Text PDF

Magnesium-based materials, which are known for their light weight and exceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive, aerospace, and military sectors. However, their inherent limitations, including low wear resistance and poor mechanical properties, have driven the development of magnesium-based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!