Nanoplatforms attached Schiff bases by condensation method; Investigation of glucose oxidase enzyme as biocatalysts.

Artif Cells Nanomed Biotechnol

Department of Chemistry, Faculty of Science, Gazi University, Ankara , Türkiye.

Published: May 2016

We report a easy approach for the immobilization of glucose oxidase enzyme (GOx) on nanoparticles. Nanoparticles-modified polystyrene-ANH2 (PSA) with some salicylaldehyde derivatives were synthesized by means of condensation and investigated the enzymatic properties of GOx immobilized on there. Modified polystyrenes were characterized using IR spectra, gel permeation chromatography, and scanning electron microscopy. All the characteristics of the immobilized glucose oxidase (PSA-SalH)-GOx, (PSA-SalCH3)-GOx, and (PSA)-GOx enzyme showed except one of them. Immobilized GOx on to (PSA) showed two optimum pH, other immobilized polymers were one optimum.

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2013.856014DOI Listing

Publication Analysis

Top Keywords

glucose oxidase
12
oxidase enzyme
8
nanoplatforms attached
4
attached schiff
4
schiff bases
4
bases condensation
4
condensation method
4
method investigation
4
investigation glucose
4
enzyme biocatalysts
4

Similar Publications

Cofactor-directed co-immobilization of dual-enzyme on functionalized montmorillonite with enhanced catalytic performance.

Int J Biol Macromol

January 2025

School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.

Recently, multi-enzyme cascade catalysis has attracted increasing attention due to the advantages of integrating multiple enzymes, few side reactions and high catalytic efficiency. Herein, a novel dual-enzyme cascade system (GOx-FMt-HRP) was developed through cofactor-directed orientational co-immobilization of glucose oxidase (GOx) and horseradish peroxidase (HRP) onto functional montmorillonite (FMt). The presented method realizes the reconstitution of cofactors and apo-enzymes (enzymes without cofactors), which enables enzymes to be immobilized in specific orientations on the support, thereby effectively reducing changes in their conformation.

View Article and Find Full Text PDF

A stretchable, adhesive, and wearable hydrogel-based patches based on a bilayer PVA composite for online monitoring of sweat by artificial intelligence-assisted smartphones.

Talanta

January 2025

Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, Tehran, 14588-89694, Iran; Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran; Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359, Bremen, Germany. Electronic address:

Real-time monitoring of sweat using wearable devices faces challenges such as limited adhesion, mechanical flexibility, and accurate detection. In this work, we present a stretchable, adhesive, bilayer hydrogel-based patch designed for continuous monitoring of sweat pH and glucose levels using AI-assisted smartphones. The patch is composed of a bottom PVA hydrogel layer functionalized with colorimetric reagents and glucose oxidase enzyme, while the top PVA-sucrose layer enhances skin adhesion and protects against air moisture.

View Article and Find Full Text PDF

Tumor microenvironment governs various therapeutic tolerability of cancer such as ferroptosis and immunotherapy through rewiring tumor metabolic reprogramming like Warburg metabolism. Highly expressed carbonic anhydrases (CA) in tumor that maintaining the delicate metabolic homeostasis is thus the most potential target to be modulated to resolve the therapeutic tolerability. Hence, in this article, a self-healable and pH-responsive spermidine/ferrous ion hydrogel loaded with CA inhibitor (acetazolamide, ACZ) and glucose oxidase (ACZ/GOx@SPM-HA Gel) was fabricated through the Schiff-base reaction between spermidine-dextran and oxidized hyaluronic acid, along with ferrous coordination.

View Article and Find Full Text PDF

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Purpose: We downloaded the gene expression profiles of patients with diabetic nephropathyfrom the GEO database and combined it with differential gene analysis of rat transcriptome,our study employed animal models to examine the role of key hub genes in diabetic nephropathy and to pinpoint significant gene regulation in this disease.

Methods: An examination of differential expression was performed using the online analysis tool GEO2R and the DN-related datasets GSE30528 and GSE1009 obtained from the GEO database. A comparison of gene expression between the normal and diabetic nephropathy groups was conducted using the RNA-seq technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!