Background: Small peptides encoded as one- or two-exon genes in plants have recently been shown to affect multiple aspects of plant development, reproduction and defense responses. However, popular similarity search tools and gene prediction techniques generally fail to identify most members belonging to this class of genes. This is largely due to the high sequence divergence among family members and the limited availability of experimentally verified small peptides to use as training sets for homology search and ab initio prediction. Consequently, there is an urgent need for both experimental and computational studies in order to further advance the accurate prediction of small peptides.

Results: We present here a homology-based gene prediction program to accurately predict small peptides at the genome level. Given a high-quality profile alignment, SPADA identifies and annotates nearly all family members in tested genomes with better performance than all general-purpose gene prediction programs surveyed. We find numerous mis-annotations in the current Arabidopsis thaliana and Medicago truncatula genome databases using SPADA, most of which have RNA-Seq expression support. We also show that SPADA works well on other classes of small secreted peptides in plants (e.g., self-incompatibility protein homologues) as well as non-secreted peptides outside the plant kingdom (e.g., the alpha-amanitin toxin gene family in the mushroom, Amanita bisporigera).

Conclusions: SPADA is a free software tool that accurately identifies and predicts the gene structure for short peptides with one or two exons. SPADA is able to incorporate information from profile alignments into the model prediction process and makes use of it to score different candidate models. SPADA achieves high sensitivity and specificity in predicting small plant peptides such as the cysteine-rich peptide families. A systematic application of SPADA to other classes of small peptides by research communities will greatly improve the genome annotation of different protein families in public genome databases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924332PMC
http://dx.doi.org/10.1186/1471-2105-14-335DOI Listing

Publication Analysis

Top Keywords

small peptides
16
gene prediction
12
peptides
9
small plant
8
plant peptides
8
spada
8
small
8
family members
8
genome databases
8
classes small
8

Similar Publications

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Ribosome profiling reveals dynamic translational landscape in HEK293T cells following X-ray irradiation.

Genomics

January 2025

Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear.

View Article and Find Full Text PDF

RAP1 is essential for PRRSV replication and the synthesis of the viral genome.

Vet Microbiol

December 2024

Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Since its emergence, porcine reproductive and respiratory syndrome (PRRS) has caused enormous economic losses to the global swine industry. The pathogenesis of PRRS remains under investigation. The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in pigs and respiratory in piglets, which is a 15 kb RNA virus that encodes 16 viral proteins, most of which exhibit multiple functions during the virus lifecycle.

View Article and Find Full Text PDF

"On-off" elution mechanism facilitates the rapid LC/MS/MS-based analysis of peptide antibiotics in human plasma.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Department of Pharmacy, The Third Hospital of Changsha, Changsha 410015, People's Republic of China. Electronic address:

Individualized medication with peptide antibiotics, guided by therapeutic drug monitoring, is essential to treat infections caused by multidrug-resistant bacteria. Peptide antibiotics exhibit an "on-off" elution mechanism on a C18 column, leading to adsorption at the column inlet in all-aqueous conditions. Unlike small molecules, column length minimally influences their retention, with longer columns simply broadening peptide antibiotic peaks due to unnecessary post-column volume.

View Article and Find Full Text PDF

Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!