Effects of cell density and biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions.

Biomacromolecules

Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechology, The University of Queensland, St. Lucia 4072 Australia.

Published: December 2013

With the rapidly growing interest in the use of mesenchymal stromal cells (MSCs) for cell therapy and regenerative medicine applications, either alone as an injected suspension, or dispersed within injectable hydrogel delivery systems, greater understanding of the structure-function-property characteristics of suspensions of adhesion-dependent mesenchymal cells is required. In this paper, we present the results of an experimental study into the flow behavior of concentrated suspensions of living cells of mesenchymal origin (fibroblasts) over a wide range of cell concentrations, with and without the addition of hyaluronic acid (HA), a commonly utilized biomolecule in injectable hydrogel formulations. We characterize the change in the shear viscosity as a function of shear stress and shear rate for cell volume fractions varying from 20 to 60%. We show that high volume fraction suspensions of living mesenchymal cells, known to be capable of homotypic interactions, exhibit highly complex but reproducible rheological footprints, including yield stress, shear thinning and shear-induced fracture behaviors. We show that with the addition of HA, we can significantly modify and tailor the rheology of these cell suspensions at all volume fractions. Using FACS and confocal imaging, we show that the observed effect of HA addition is due to a significantly modulation in the formation of cellular aggregates in these suspensions, and thus the resultant volume spanning network. Considering the aggregates as fractal structures, we show that by taking into account the changes in volume fractions with shear, we are able to plot a master curve for the range of conditions investigated and extract from it the average adhesion force between individual cells, across a population of millions of cells. The outcomes of this study not only provide new insight into the complexity of the flow behaviors of concentrated, adhesive mesenchymal cell suspensions, and their sensitivity to associative biomacromolecule addition, but also a novel, rapid method by which to measure the average adhesion force between individual cells, and the impacts of biomacromolecules on this important parameter.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm401335gDOI Listing

Publication Analysis

Top Keywords

cell suspensions
12
volume fractions
12
biomacromolecule addition
8
flow behavior
8
behavior concentrated
8
mesenchymal cell
8
injectable hydrogel
8
mesenchymal cells
8
suspensions living
8
stress shear
8

Similar Publications

Background/objective: Ultraviolet (UV) B radiation leads to DNA damage by generating cyclobutane pyrimidine dimers (CPDs). UVB-induced CPDs can also result in immune suppression, which is a major risk factor for non-melanoma skin cancer (NMSC). UVB-induced CPDs are repaired by nucleotide repair mechanisms (NER) mediated by xeroderma pigmentosum complementation group A (XPA).

View Article and Find Full Text PDF

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

Baker's yeast is a key starting material for producing extracts with diverse compositions and applications. This study investigates the effect of pulsed electric field (PEF) pretreatment, which induces irreversible electropermeabilization, on the enzymatic hydrolysis of yeast. Cell suspensions were exposed to monopolar rectangular pulses in a continuous flow system followed by 4 h of incubation with Alcalase at concentrations of 0.

View Article and Find Full Text PDF

An Advanced Combinatorial System from Leaves and Propolis Enhances Antioxidants' Skin Delivery and Fibroblasts Functionality.

Pharmaceuticals (Basel)

November 2024

Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece.

: Vine leaves are a bulky by-product that are disposed of and treated as waste in the wine production process. In the present study polyphenols from vine leaves were extracted and simultaneously encapsulated in a new delivery system consisting of liposomes and cyclodextrins. This system was further combined with propolis polyphenols encapsulated in cyclodextrins, resulting in a colloidal suspension for the release of antioxidants in a time-controlled way, the rate of which depends on the ratio of the materials.

View Article and Find Full Text PDF

Designing Microfluidic-Chip Filtration with Multiple Channel Networks for the Highly Efficient Sorting of Cell Particles.

Micromachines (Basel)

December 2024

Complex Fluids Laboratory, Advanced Materials and Systems Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.

Microfluidic-chip based hydrodynamic filtration is one of the passive sorting techniques that can separate cell or particle suspensions into subpopulations of different sizes. As the branch channels and side channels play an important role in maintaining particle focusing, their rational design is necessary for highly efficient sorting. A model framework involving multiple side and multiple branch channels has been developed by extending the analytical analysis of three-dimensional laminar flow in channel networks, which was previously validated by comparison with numerical simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!