The Salmonella flagellar motor consists of a rotor and about a dozen stator elements. Each stator element, consisting of MotA and MotB, acts as a proton channel to couple proton flow with torque generation. A highly conserved Asp33 residue of MotB is directly involved in the energy coupling mechanism, but it remains unknown how it carries out this function. Here, we show that the MotB(D33E) mutation dramatically alters motor performance in response to changes in external load. Rotation speeds of the MotA/B(D33E) and MotA(V35F)/B(D33E) motors were markedly slower than the wild-type motor and fluctuated considerably at low load but not at high load, whereas the rotation rate of the wild-type motor was stable at any load. At low load, pausing events were frequently observed in both mutant motors. The proton conductivities of these mutant stator channels in their 'unplugged' forms were only half of the conductivity of the wild-type channel. These results suggest that the D33E mutation induces a load-dependent inactivation of the MotA/B complex. We propose that the stator element is a load-sensitive proton channel that efficiently couples proton translocation with torque generation and that Asp33 of MotB is critical for this co-ordinated proton translocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.12453 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain.
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFPlant Physiol
January 2025
Institute of Biology, University of Graz, Graz, Austria.
Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nutrition, Second Military Medical University, Shanghai, China.
Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!