Background: Reactive oxygen species arise in the mitochondria as byproducts of respiration and oxidase activity and have important roles in many physiological and pathophysiological conditions. The level of reactive oxygen species is regulated by a number of enzymes and physiological antioxidants, including HO-1, Sod2, catalase and COX-2, etc. And HO-1 against oxidative stress requires an increase in stress-responsive genes, such as Sod2 and catalase. Especially for the activity of HO-1, cobalt protoporphyrin is known to be a potent and effective inducer in many tissues. The transcription factor, FOXO1 is resistant to oxidative stress through downregulating reactive oxygen species production. Previous study showed that FOXO1 induces HO-1 expression by binding to HO-1 promoter. The question whether cobalt protoporphyrin induces HO-1 expression mediated by FOXO1 and subsequently lessens reactive oxygen species production remains to be elucidated.
Results: Cobalt protoporphyrin enhances the expression of FOXO1 and facilitates FOXO1 binding to HO-1 promoter and increasing its transcriptional activity without influencing the FOXO1 protein stability. CoPP induces HO-1 and other oxidative stress-responsive genes expression, such as catalase, cytochrome c, Sod2, and COX-2, and decreases mitochondria-derived reactive oxygen species production, which are mediated partially by FOXO1.
Conclusions: Cobalt protoporphyrin induces HO-1 and other oxidative stress-responsive genes expression mediated partially by FOXO1, and has an important role in reducing cellular reactive oxygen species level. Cobalt protoporphyrin may be a more promising therapeutic agent to upregulate some antioxidantive genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821864 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080521 | PLOS |
JAMA Pediatr
January 2025
Department of Cardiology, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts.
Importance: Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening complication of COVID-19 infection. Data on midterm outcomes are limited.
Objective: To characterize the frequency and time course of cardiac dysfunction (left ventricular ejection fraction [LVEF] <55%), coronary artery aneurysms (z score ≥2.
J Mater Chem B
January 2025
Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
Amyloidosis of the human islet amyloid polypeptide (hIAPP) is closely related to the pathogenesis of type 2 diabetes (T2D) and serves as both a diagnostic hallmark and a key therapeutic target for T2D. In this study, we discovered that oritavancin (Ori), a glycopeptide antibiotic primarily prescribed for Gram-positive bacterial infections, can dose-dependently inhibit recombinant hIAPP (rhIAPP) amyloid formation. Ori specifically inhibited rhIAPP amyloid formation at the initial nucleation stage but didn't affect mature rhIAPP fibrils.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.
Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.
Appl Microbiol Biotechnol
January 2025
Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr.18, 22609, Hamburg, Germany.
The focus on microalgae for applications in several fields, e.g. resources for biofuel, the food industry, cosmetics, nutraceuticals, biotechnology, and healthcare, has gained increasing attention over the last decades.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
Environmentally persistent free radicals (EPFRs) have been widely detected in polycyclic aromatic hydrocarbon (PAH)-contaminated soils, but the activation of persulfate by inherent EPFRs in PAH-contaminated soil for the transformation of PAHs remains unclear. In the present study, benzo[]pyrene (B[]P) was selected as a representative PAH and its transformation in a persulfate/B[]P-contaminated soil system was studied without the addition of any other activator. Results indicated that EPFRs in the soil activated persulfate to produce reactive oxygen species (ROS) and degraded B[]P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!