Nutritional regulation of stem and progenitor cells in Drosophila.

Development

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.

Published: December 2013

Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3833425PMC
http://dx.doi.org/10.1242/dev.079087DOI Listing

Publication Analysis

Top Keywords

stem progenitor
8
cell types
8
nutritional regulation
4
stem
4
regulation stem
4
progenitor cells
4
cells drosophila
4
drosophila stem
4
stem cells
4
cells progenitors
4

Similar Publications

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Bilio-biliary anastomosis (BBA) is a critical surgical procedure that is performed with the objective of restoring bile duct continuity. This procedure is often required in cases where there has been an injury to the extrahepatic bile ducts or during liver transplantation. Despite advances in surgical techniques, the healing of BBA remains a significant challenge, with complications such as stricture formation and leakage affecting patient outcomes.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Transdifferentiation of rat keratinocyte progenitors to corneal epithelial cells by limbal niche via the STAT3/PI3K/AKT signaling pathway.

Stem Cell Res Ther

January 2025

Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.

Purpose: To develop a method for enriching keratinocyte progenitor cells (KPCs) and establish a limbal niche (LN)-mediated transdifferentiation protocol of KPCs into corneal epithelial cells.

Methods: Limbal niche cells (LNCs) were isolated from limbal tissues through enzymatic digestion and characterized. Conditioned medium from LNCs cultures was collected.

View Article and Find Full Text PDF

Fate mapping in mouse demonstrates early secretory differentiation directly from Lgr5+ intestinal stem cells.

Dev Cell

January 2025

Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark. Electronic address:

The intestinal epithelium has a remarkably high turnover in homeostasis. It remains unresolved how this is orchestrated at the cellular level and how the behavior of stem and progenitor cells ensures tissue maintenance. To address this, we combined quantitative fate mapping in three complementary mouse models with mathematical modeling and single-cell RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!