Antiviral activity of GuiQi polysaccharides against enterovirus 71 in vitro.

Virol Sin

School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China,

Published: December 2013

In this study, we have investigated the antiviral activity of GuiQi polysaccharides (GQP) upon enterovirus 71 (EV71) in vitro. An assay using methyl thiazolyl tetrazolium (MTT), and analyses of cytopathic effects (CPE) were used to examine the antiviral activity of GQP upon Vero cells infected with EV71. The results revealed that GQP at concentrations below 31.2 μg/mL exhibited significant antiviral effects upon EV71 when applied under three different experimental protocols. GQP was most strongly active in preventing the adsorption of EV71 to target cells and in this respect it was significantly more effective than ribavirin. In addition, it was clear that GQP could inhibit viral replication when added to cells 2 h after infection, but if added at the point of infection its effect was weak. GQP is considered to be less toxic than ribavirin, and may warrant further evaluation as a possible agent in the treatment of hand, foot and mouth disease (HFMD).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208325PMC
http://dx.doi.org/10.1007/s12250-013-3376-8DOI Listing

Publication Analysis

Top Keywords

antiviral activity
12
activity guiqi
8
guiqi polysaccharides
8
gqp
6
antiviral
4
polysaccharides enterovirus
4
enterovirus vitro
4
vitro study
4
study investigated
4
investigated antiviral
4

Similar Publications

Amphibian-Derived Peptides as Natural Inhibitors of SARS-CoV-2 Main Protease (Mpro): A Combined In Vitro and In Silico Approach.

Chem Biodivers

January 2025

Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.

View Article and Find Full Text PDF

Tigilanol tiglate (EBC-46) is a selective modulator of protein kinase C (PKC) isoforms that is Food and Drug Administration (FDA) approved for the treatment of mast cell tumors in canines with up to an 88% cure rate. Recently, it has been FDA approved for the treatment of soft tissue sarcomas in humans. The role of EBC-46 and, especially, its analogs in efforts to eradicate HIV, treat neurological and cardiovascular disorders, or enhance antigen density in antigen-targeted chimeric antigen receptor-T cell and chimeric antigen receptor-natural killer cell immunotherapies has not been reported.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Hepatitis C Virus (HCV) is a blood borne pathogen that affects around 200 million individuals worldwide. Immunizations against the Hepatitis C Virus are intended to enhance T-cell responses and have been identified as a crucial component of successful antiviral therapy. Nevertheless, attempts to mediate clinically relevant anti-HCV activity in people have mainly failed, despite the vaccines present satisfactory progress.

View Article and Find Full Text PDF

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!