The role of grain size and crystallographic orientation on the biocompatibility of commercially pure titanium was investigated. Samples, with significant differences in crystallographic texture and average grain size (from 0.4 to 40 µm) were produced by equal channel angular pressing (ECAP) and post deformation annealing. X-ray diffraction and electron back scattered diffraction (EBSD) were used to evaluate differences in texture and microstructural characteristics. The titanium oxide film present on the surface of the samples was analyzed to determine the oxidation state of titanium and the chemical bonds between oxygen and titanium using X-ray photoelectron spectroscopy (XPS). Biocompatibility experiments were conducted using MC3T3 preosteoblast cells. Cell attachment was found to be texture-sensitive, where the number of attached cells was higher on the samples with higher number of (0002) planes exposed to the surface, regardless of the grain size. A relationship was also found between the titanium oxide species formed on the surface and the crystallographic texture underneath. The surface texture consisting of more densely packed basal planes promote the formation of Ti-OH on the surface, which in turn, enhances the cell-substrate interactions. These surface characteristics are deemed responsible for the observed difference in cell attachment behaviour of surfaces with different textures. Finally, it is inferred that texture, rather than the grain size, plays the major role in controlling the surface biocompatibility of biomedical devices fabricated from pure metallic titanium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35028 | DOI Listing |
Plant Genome
March 2025
Department of Soil, Plant and Food Sciences, Genetics and Plant Breeding Section, University of Bari Aldo Moro, Bari, Italy.
Wheat breeders are constantly looking for genes and alleles that increase grain yield. One key strategy is finding new genetic resources in the wild and domesticated gene pools of related species with genes affecting grain size. This study explored a natural population of Triticum turgidum (L.
View Article and Find Full Text PDFHeliyon
January 2025
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, HEMC, Guangzhou, China.
The AlO: Cr light-converting materials were successfully synthesized via co-precipitation, resulting in a grain size ranging from 100 to 400 nm. Under excitation wavelengths spanning from 360 to 650 nm, a distinct near-infrared (NIR) emission at 695 nm was observed. Through optimization, it has been established that a Cr doping concentration of 1.
View Article and Find Full Text PDFHeliyon
January 2025
AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.
A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze st., Novosibirsk 630090, Russian Federation.
This work investigates the solid-state reaction between iridium and zirconium carbide, resulting in the formation of carbon and ZrIr-an intermetallic compound of great interest for modern high-temperature materials science. We have found a transition of kinetic regimes in this reaction: from linear kinetics (when the chemical reaction is a limiting stage) at 1500 and 1550 °C to 'non-parabolic kinetics' at 1600 °C. Non-parabolic kinetics is characterized by the thickness of the product layer being proportional to a power of time less than 1/2.
View Article and Find Full Text PDFRice (N Y)
January 2025
Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
Rice grain size influences both grain yield and quality, making it a significant target for rice genetic improvement. In recent years, numerous genes related to grain size with differential effects have been cloned. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing system is a convenient tool for modifying genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!