Epidemiologic and experimental evidence support a chemoprotective role for selenium (Se) in malignancy. Many mechanisms have been proposed to explain this phenomenon. In this study, the effect of Se intake on proliferation of hepatocytes and normal colonic epithelial cells in rats was determined using autoradiographic analysis of thymidine incorporation into DNA. Hepatocyte proliferation was measured 24 h after partial hepatectomy. Selenium-dosed animals demonstrated a significant reduction in hepatocyte labeling compared to the control group (6.1±2.6 vs 29.2±15.6,p=0.003). However, Se dosing did not affect the thymidine-labeling indices or distribution of labeling in colonic epithelium. Selenium may inhibit cell proliferation when it is the result of an unusually intense stimulus. This finding could explain in part the inhibitory effect of Se in some experimental cancer models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02795567DOI Listing

Publication Analysis

Top Keywords

cell proliferation
8
selenium cell
4
proliferation
4
proliferation liver
4
liver colon
4
colon epidemiologic
4
epidemiologic experimental
4
experimental evidence
4
evidence support
4
support chemoprotective
4

Similar Publications

Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.

Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.

View Article and Find Full Text PDF

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!