ATP7B is a copper-transporting ATPase that plays a key role in the regulation of copper homeostasis. Mutations in the ATP7B gene are causative for Wilson's disease, and recent reports have suggested that genetic variants are associated with susceptibility to Alzheimer's disease. Unfortunately, it is difficult to profile experimentally novel genetic variants in the ATP7B gene, because the human protein X-ray structure is not yet entirely understood. In order to investigate ATP7B non-synonymous substitutions, we used an in silico amino acid sequence-based approach. Specifically, we analyzed 337 ATP7B non-synonymous substitutions, which included Wilson's disease-causing mutations (DVs) and non Wilson's disease-causing variants (NDVs), with an algorithm that estimated a combined probability (cPdel) of an amino acidic change to be deleterious for the protein function. This approach appeared to reliably indentify the probability of DVs and NDVs to be deleterious and to profile still unknown gene variants. Specifically, after analyzing ATP7B protein domains with the cPdel method, we found results in line with the predicted-modeled domains and some new suggestions. In conclusion, a functional survey of amino acid changes in the ATP7B protein is provided herein, and we suggest that this bioinformatic method can furnish information about novel ATP7B mutations. Furthermore, the same approach can be applied to other uncharacterized proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10534-013-9686-3DOI Listing

Publication Analysis

Top Keywords

atp7b gene
12
atp7b
9
genetic variants
8
atp7b non-synonymous
8
non-synonymous substitutions
8
amino acid
8
wilson's disease-causing
8
atp7b protein
8
protein
5
silico investigation
4

Similar Publications

Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.

View Article and Find Full Text PDF

Wilson's disease (WD) (OMIM 277900) or hepatolenticular degeneration is an autosomal recessive disorder caused by impaired copper excretion with subsequent accumulation in the liver, brain, and other tissues of the body. The defects in copper metabolism are based on various pathogenic variants of the ATP7B gene encoding copper-transporting P-type ATPase. The aim of this work is to search for pathogenic variants of the ATP7B gene among Eastern Eurasian patient cohorts and to pick correlations between pathogenic variants, gender, age of onset of the disease, and the course of the disease.

View Article and Find Full Text PDF

Hearing loss (HL) is the most common disorder in newborns with a highly heterogeneous genetic background. Despite significant progress in screening and identifying genes related to congenital hearing loss, there are still candidate genes implicated in HL that remain undiscovered. We investigated HL in 43 Chinese families by segregating bilateral sensorineural HL via whole-exome sequencing (WES) and Sanger sequencing.

View Article and Find Full Text PDF

Genetic profiling of Wilson disease reveals a potential recurrent pathogenic variant of ATP7B in the Jordanian population.

J Pediatr Gastroenterol Nutr

January 2025

Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.

Objectives: Wilson disease (WD) is an autosomal-recessive disorder that disrupts copper homeostasis. ATPase copper transporting beta (ATP7B) gene is implicated as the disease-causing gene in WD. The common symptoms associated with WD include hepatic, neurological, psychiatric, and ophthalmic manifestations.

View Article and Find Full Text PDF

[Research progresses in gene therapy for hepatolenticular degeneration].

Zhonghua Gan Zang Bing Za Zhi

January 2025

Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei230022, China NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei230032, China Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei230032, China Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei230032, China Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynecology Diseases, Hefei230032, China Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei230032, China Anhui Provincial Institute of Translational Medicine, Hefei230032, China.

Hepatolenticular degeneration, also known as Wilson's disease, is a type of autosomal recessive genetic disorder of copper metabolism. The causative gene, ATP7B, is located on the long arm of chromosome 13 and encodes a P-type ATPase that is involved in copper transport. Pathogenic mutations in the ATP7B gene sequence lead to the diminished or lost function of the ATP7B protein, resulting in pathological copper deposition in organs such as the liver, brain, kidneys, and cornea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!