Cysteinyl leukotrienes (cys-LTs), LTC₄, LTD₄, LTE₄ are potent inflammatory lipid mediators that act through two distinct G-protein-coupled receptors, CysLT₁R and CysLT₂R. Although cys-LTs are shown to induce vascular leakage and atherosclerosis, the molecular mechanism by which cys-LTs modulate endothelial function is not known. Here, we show that cys-LTs (LTC₄ and LTD₄) induce robust calcium influx in human umbilical vein endothelial cells (HUVECs) through CysLT₂R, but not CysLT₁R. Further, cys-LT treatment induced endothelial cell (EC) contraction leading to monolayer disruption via CysLT₂R/Rho kinase dependent pathway. Furthermore, stimulation with cys-LTs potentiated TNFα-induced VCAM-1 expression and leukocyte recruitment to ECs through CysLT₂R. In contrast, we found that both LTC₄ and LTD₄ stimulated EC proliferation through CysLT₁R. Taken together, these results suggest that cys-LTs induce endothelial inflammation and proliferation via CysLT₂R/Rho kinase and CysLT₁R/Erk dependent pathways, respectively, which play critical role in the etiology of cardiovascular diseases such as atherosclerosis and myocardial infarction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834363 | PMC |
http://dx.doi.org/10.1038/srep03274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!