Protein phosphatase methylesterase 1 (PPME1) is a protein phosphatase 2A (PP2A)-specific methyl esterase that negatively regulates PP2A through demethylation at its carboxy terminal leucine 309 residue. Emerging evidence shows that the upregulation of PPME1 is associated with poor prognosis in glioblastoma patients. By performing an array comparative genomic hybridization analysis to detect copy number changes, we have been the first to identify PPME1 gene amplification in 3.8% (5/131) of Chinese gastric cancer (GC) samples and 3.1% (4/124) of Chinese lung cancer (LC) samples. This PPME1 gene amplification was confirmed by fluorescence in situ hybridization analysis and is correlated with elevated protein expression, as determined by immunohistochemistry analysis. To further investigate the role of PPME1 amplification in tumor growth, short-hairpin RNA-mediated gene silencing was employed. A knockdown of PPME1 expression resulted in a significant inhibition of cell proliferation and induction of cell apoptosis in PPME1-amplified human cancer cell lines SNU668 (GC) and Oka-C1 (LC), but not in nonamplified MKN1 (GC) and HCC95 (LC) cells. The PPME1 gene knockdown also led to a consistent decrease in PP2A demethylation at leucine 309, which was correlated with the downregulation of cellular Erk and AKT phosphorylation. Our data indicate that PPME1 could be an attractive therapeutic target for a subset of GCs and LCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938515PMC
http://dx.doi.org/10.4161/cbt.27146DOI Listing

Publication Analysis

Top Keywords

ppme1 gene
12
ppme1
9
lung cancer
8
therapeutic target
8
protein phosphatase
8
pp2a demethylation
8
leucine 309
8
hybridization analysis
8
gene amplification
8
cancer samples
8

Similar Publications

Dietary intervention to prevent ()-associated gastric diseases seems to be ideal with no risk of bacterial resistance, safe long-term intervention, and correcting pathogenic mechanisms including rejuvenation of precancerous atrophic gastritis and anti-mutagenesis. A transcriptome as set of all RNAs transcribed by certain tissues or cells demonstrates gene functions and reveals the molecular mechanism of specific biological processes against diseases. Here, we have performed RNAseq and bioinformatic analysis to explain proof of concept that walnut intake can rescue from infection and explore unidentified mode of actions of walnut polyphenol extract (WPE).

View Article and Find Full Text PDF

Background: The incidence and mortality rates of pancreatic carcinoma (PC) are rapidly increasing worldwide. Long noncoding RNAs (lncRNAs) play critical roles during PC initiation and progression. Since the lncRNA DNAH17-AS1 is highly expressed in PC, the regulation of DNAH17-AS1 in PC was investigated in this study.

View Article and Find Full Text PDF

Protein phosphatase methylesterase 1 has been identified as a novel gene in skeletal muscle that is upregulated in response to neurogenic atrophy in mice. Western blot analysis confirms that Ppme1 is expressed during both muscle cell proliferation and differentiation. Additionally, the Ppme1 promoter is active in muscle cells, while mutation of a conserved E-box element prevents full induction of the Ppme1 reporter gene, suggesting that Ppme1 is transcriptionally regulated by myogenic regulatory factors.

View Article and Find Full Text PDF

Immunoglobulin Binding Protein 1 as a Potential Urine Biomarker in Patients with Lupus Nephritis.

Int J Mol Sci

May 2019

Division of Rheumatology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.

We evaluated the role of immunoglobulin binding protein 1 (IGBP1), a phosphoprotein associated with the B cell receptor (BCR) complex, as a urine biomarker in lupus nephritis (LN). The IGBP1 concentrations in plasma and urine of patients with LN, systemic lupus erythematosus (SLE) without nephritis and healthy controls were estimated by ELISA. IGBP1 expression in the kidneys of LN patients and transplantation donors was detected by immunohistochemistry.

View Article and Find Full Text PDF

Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion.

Neurobiol Aging

September 2016

Department of Pharmacology, College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Reduction of protein phosphatase-2A (PP2A) activity is a common clinical feature of Alzheimer's disease and vascular dementia. In this study, we observed that chronic brain hypoperfusion induced by bilateral common carotid artery occlusion of rats led to PP2A inactivation based on the increase in tyrosine-307 phosphorylation and leucine-309 demethylation of PP2AC and the depression in PP2ABα. Knockdown of miR-195 using overexpression of its antisense molecule oligonucleotide (pre-AMO-miR-195) delivered by a lentivirus (lenti-pre-AMO-miR-195) increased tyrosine-307 phosphorylation and decreased both PP2ABα expression and leucine-309 methylation; these effects were prevented by the overexpression of miR-195 using lenti-pre-miR-195 and controlled by an increase in methylesterase (PME-1) and a decrease in leucine carboxyl methyltransferase-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!