Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3879576 | PMC |
http://dx.doi.org/10.1074/jbc.M113.518795 | DOI Listing |
Nanomaterials (Basel)
January 2025
Faculty of Engineering & Technology, Marwadi University, Rajkot-Morbi Road, Rajkot 360003, Gujarat, India.
Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Jamia, Madinah, 42351, Saudi Arabia.
This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China. Electronic address:
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
Purpose: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma that develops sporadically or in Neurofibromatosis type 1 patients. Its development is marked by the inactivation of specific tumor suppressor genes (TSGs): NF1, CDKN2A and SUZ12EED (Polycomb Repressor Complex 2). Each TSG loss can be targeted by particular drug inhibitors and we aimed to systematically combine these inhibitors, guided by TSG inactivation status, to test their precision medicine potential for MPNSTs.
View Article and Find Full Text PDFRSC Adv
January 2025
Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374.
In this study, stems and leaves of the papaya plant were employed to prepare a high-quality porous adsorbent carbonization and chemical activation using phosphoric acid. This adsorbent demonstrates superior adsorption capabilities for the efficient removal of hazardous alizarin red s (ARS) and methylene blue (MB) dyes. Thus, it contributes to waste reduction and promotes sustainable practices in environmental remediation, aligning with global efforts to develop sustainable materials that address water pollution while supporting circular economy principles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!