AI Article Synopsis

  • White matter hyperintensities (WMHs) seen on T2/FLAIR brain MRI are common in healthy elderly individuals, but their relationship to permanent brain damage is still debated.
  • A study found substantial agreement between neuropathologists regarding demyelination, but only fair to moderate agreement among radiologists, indicating a discrepancy in interpreting the lesions' severity.
  • Overall, T2/FLAIR MRI tends to overestimate demyelination in periventricular regions while underestimating it in deep white matter, likely due to changes in brain aging that affect water content and blood-brain barrier function.

Article Abstract

Background: White matter hyperintensities (WMH) lesions on T2/FLAIR brain MRI are frequently seen in healthy elderly people. Whether these radiological lesions correspond to irreversible histological changes is still a matter of debate. We report the radiologic-histopathologic concordance between T2/FLAIR WMHs and neuropathologically confirmed demyelination in the periventricular, perivascular and deep white matter (WM) areas.

Results: Inter-rater reliability was substantial-almost perfect between neuropathologists (kappa 0.71 - 0.79) and fair-moderate between radiologists (kappa 0.34 - 0.42). Discriminating low versus high lesion scores, radiologic compared to neuropathologic evaluation had sensitivity / specificity of 0.83 / 0.47 for periventricular and 0.44 / 0.88 for deep white matter lesions. T2/FLAIR WMHs overestimate neuropathologically confirmed demyelination in the periventricular (p < 0.001) areas but underestimates it in the deep WM (0 < 0.05). In a subset of 14 cases with prominent perivascular WMH, no corresponding demyelination was found in 12 cases.

Conclusions: MRI T2/FLAIR overestimates periventricular and perivascular lesions compared to histopathologically confirmed demyelination. The relatively high concentration of interstitial water in the periventricular / perivascular regions due to increasing blood-brain-barrier permeability and plasma leakage in brain aging may evoke T2/FLAIR WMH despite relatively mild demyelination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893472PMC
http://dx.doi.org/10.1186/2051-5960-1-14DOI Listing

Publication Analysis

Top Keywords

white matter
16
matter hyperintensities
8
lesions t2/flair
8
t2/flair wmhs
8
neuropathologically confirmed
8
confirmed demyelination
8
demyelination periventricular
8
deep white
8
matter
5
brain t2/flair
4

Similar Publications

Cellular stressors inhibit general protein synthesis while upregulating stress response transcripts and/or proteins. Phosphorylation of the translation factor eIF2α by one of the several stress-activated kinases is a trigger for such signaling, known as the integrated stress response (ISR). The ISR regulates cell survival and function under stress.

View Article and Find Full Text PDF

Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.

View Article and Find Full Text PDF

Traditional Diffusion Tensor Imaging (DTI) metrics are affected by crossing fibers and lesions. Most of the previous tractometry works use the single diffusion tensor, which leads to limited sensitivity and challenging interpretation of the results in crossing fiber regions. In this work, we propose a tractometry pipeline that combines white matter tractography with multi-tensor fixel-based metrics.

View Article and Find Full Text PDF

Objective: High Angular Resolution Diffusion Imaging (HARDI) models have emerged as a valuable tool for investigating microstructure with a higher degree of detail than standard diffusion Magnetic Resonance Imaging (dMRI). In this study, we explored the potential of multiple advanced microstructural diffusion models for investigating preterm birth in order to identify non-invasive markers of altered white matter development.

Approach: Rather than focusing on a single MRI modality, we studied on a compound of HARDI techniques in 46 preterm babies studied on a 3T scanner at term-equivalent age and in 23 control neonates born at term.

View Article and Find Full Text PDF

Background: There is evidence that iron metabolism may play a role in the underlying pathophysiological mechanism of migraine. Studies using (=1/ ) relaxometry, a common MRI-based iron mapping technique, have reported increased values in various brain structures of migraineurs, indicating iron accumulation compared to healthy controls.

Purpose: To investigate whether there are short-term changes in during a migraine attack.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!