We tested the hypothesis that alkamides from Echinacea exert antifungal activity by disrupting the fungal cell wall/membrane complex. Saccharomyces cerevisiae cells were treated separately with each of seven synthetic alkamides found in Echinacea extracts. The resulting cell wall damage and cell viability were assessed by fluorescence microscopy after mild sonication. Membrane disrupting properties of test compounds were studied using liposomes encapsulating carboxyfluorescein. Negative controls included hygromycin and nourseothricin (aminoglycosides that inhibit protein synthesis), and the positive control used was caspofungin (an echinocandin that disrupts fungal cell walls). The results show that yeast cells exposed to sub-inhibitory concentrations of each of the seven alkamides and Echinacea extract exhibit increased frequencies of cell wall damage and death that were comparable to caspofungin and significantly greater than negative controls. Consistent with effects of cell wall damaging agents, the growth inhibition by three representative alkamides tested and caspofungin, but not hygromycin B, were partially reversed in sorbitol protection assays. Membrane disruption assays showed that the Echinacea extract and alkamides have pronounced membrane disruption activity, in contrast to caspofungin and other controls that all had little effect on membrane stability. A Quantitative Structure-Activity Relationship (QSAR) analysis was performed to study the effect of structural substituents on the antifungal activity of the alkamides. Among the set studied, diynoic alkamides showed the greatest antifungal and cell wall disruption activities while an opposite trend was observed in the membrane disruption assay where the dienoic group was more effective. We propose that alkamides found in Echinacea act synergistically to disrupt the fungal cell wall/membrane complex, an excellent target for specific inhibition of fungal pathogens. Structure-function relationships provide opportunities for synthesis of alkamide analogs with improved antifungal activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2013.10.025 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
November 2024
Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
Antibiotics (Basel)
October 2024
UWA School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia.
Front Pharmacol
August 2024
Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.
Dicaffeoylquinic acids (DCQAs) are polyphenolic compounds found in various medicinal plants such as and whose multi-constituent extracts are used worldwide to treat respiratory diseases. Besides triterpenes, saponins, alkamides, and other constituents, DCQAs are an important group of substances for the pharmacological activity of plant-derived extracts. Therefore, the pharmacological properties of DCQAs have been studied over the last decades, suggesting antioxidative, anti-inflammatory, antimicrobial, hypoglycaemic, cardiovascular protective, neuroprotective, and hepatoprotective effects.
View Article and Find Full Text PDFPhytother Res
May 2023
Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy.
Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP -R ; rich in alkamides) and butanolic extract (EP -R ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!