Recent studies have shown that hemorrhagic injury in the preterm cerebellum leads to long-term neurological sequelae, such as motor, affective, and cognitive dysfunction. How cerebellar hemorrhage (CBH) affects the development and function of the cerebellum is largely unknown. Our study focuses on developing a mouse model of CBH to determine the anatomical, behavioral, and molecular phenotypes resulting from a hemorrhagic insult to the developing cerebellum. To induce CBH in the postnatal mouse cerebellum, we injected bacterial collagenase, which breaks down surrounding blood vessel walls, into the fourth ventricle at postnatal day two. We found a reduction in cerebellar size during postnatal growth, a decrease in granule cells, and persistent neurobehavioural abnormalities similar to abnormalities reported in preterm infants with CBH. We further investigated the molecular pathways that may be perturbed due to postnatal CBH and found a significant upregulation of genes in the inflammatory and sonic hedgehog pathway. These results point to an activation of endogenous mechanisms of injury and neuroprotection in response to postnatal CBH. Our study provides a preclinical model of CBH that may be used to understand the pathophysiology of preterm CBH and for potential development of preventive therapies and treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2013.11.010 | DOI Listing |
Heliyon
January 2025
Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis.
View Article and Find Full Text PDFFront Bioinform
January 2025
Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China.
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).
View Article and Find Full Text PDFFront Pharmacol
January 2025
Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
Introduction: 7,8-Dihydroxyflavone (7,8-DHF) is a promising translational therapy in several brain injury models, including the neonatal hypoxia-ischemia (HI) model in mice. However, the neuroprotective effect of 7,8-DHF was only observed in female, but not male, neonatal mice with HI brain injury. It is unknown whether HI-induced physiological changes affect brain distribution of 7,8-DHF differently for male versus female mice.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Indiana University School of Medicine, Indianapolis, Indiana; IU Simon Comprehensive Cancer Center, Indianapolis, Indiana; R.L. Roudebush Indianapolis VA Medical Center, Indianapolis, Indiana. Electronic address:
The Hhex gene encodes a transcription factor that is important for both embryonic and post-natal development, especially of hematopoietic tissues. Hhex is one of the most common sites of retroviral integration in mouse models. We found the most common integrations in AKXD (recombinant inbred strains) T-ALLs occur 57-61kb 3' of Hhex and activate Hhex gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!