The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed. A pharmacokinetic study of the ODMs was also conducted in eight beagle dogs. It was found that sucrose beads should be coated using organic solvents to preserve their original morphology. For the active coating, the aqueous coating solution should be used for drug stability. When sucrose beads were coated using organic-aqueous crossover coating process, double-layer ODMs with round shapes were produced with detectable impurities below limit of US Pharmacopeia. The median size of ODMs was 195.6 μm, which was considered small enough for a good mouthfeel. The ODMs dissolved in artificial saliva within 15 s because of hydrophilic materials including sucrose and HPC in the ODMs. Because of its fast-dissolving properties, 100% release of the drug was reached within 5 min. Pharmacokinetic parameters including Cmax and AUC24 indicated bioequivalence of the ODMs and the conventional immediate release tablets. Therefore, by using the organic-aqueous crossover coating process, double-layer ODMs were successively prepared with small size, round shapes and good drug stability.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2013.858742DOI Listing

Publication Analysis

Top Keywords

organic-aqueous crossover
16
crossover coating
16
coating process
16
sucrose beads
12
coating
8
desmopressin orally
8
orally disintegrating
8
disintegrating microparticles
8
odms
8
active coating
8

Similar Publications

Stability and Performance of Commercial Membranes in High-Temperature Organic Flow Batteries.

Membranes (Basel)

August 2024

Membrane Technology Group (MTG), Division cMACS, Faculty Bioscience Engineering, KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium.

Redox flow batteries (RFB) often operate at extreme pH conditions and may require cooling to prevent high temperatures. The stability of the battery membranes at these extreme pH-values at high temperatures is still largely unknown. In this paper, a systematic screening of the performance and stability of nine commercial membranes at pH 14 and pH ≤ 0 with temperatures up to 80 °C is conducted in an organic aqueous RFB.

View Article and Find Full Text PDF

Morphological Studies of Composite Spin Crossover@SiO Nanoparticles.

Nanomaterials (Basel)

November 2021

Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse (INPT, UPS), 205 Route de Narbonne, 31400 Toulouse, France.

Spin crossover (SCO) iron (II) 1,2,4-triazole-based coordination compounds in the form of composite SCO@SiO nanoparticles were prepared using a reverse microemulsion technique. The thickness of the silica shell and the morphology of the as obtained core@shell nanoparticles were studied by modifying the polar phase/surfactant ratio (ω), as well as the quantity and the insertion phase (organic, aqueous and micellar phases) of the tetraethylorthosilicate (TEOS) precursor, the quantity of ammonia and the reaction temperature. The morphology of the nanoparticles was monitored by transmission electron microscopy (TEM/HRTEM) while their composition probed by combined elemental analyses, thermogravimetry and EDX analyses.

View Article and Find Full Text PDF

The purpose of the present study was to prepare desmopressin orally disintegrating microparticles (ODMs) using organic-aqueous crossover coating process which featured an organic sub-coating followed by an aqueous active coating. Sucrose beads and hydroxypropyl cellulose (HPC) were used as inert cores and a coating material, respectively. Characterizations including size distribution analysis, in-vitro release studies and in-vitro disintegration studies were performed.

View Article and Find Full Text PDF

Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.

J Colloid Interface Sci

September 2005

Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, CEP 05513-970 São Paulo, SP, Brazil.

In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G'', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!