We study the ultrafast relaxation dynamics of uracil excited to the first bright ππ* state (S2) by an ultrafast laser pulse in the deep ultraviolet (central wavelength λ0 = 260 nm). With a unique combination of strong field dissociative ionization measurements, state of the art strong field ionization calculations, and high level ab initio calculations of excited neutral and ionic states at critical points along the neutral potentials, we are able to gain a detailed picture of the relaxation dynamics of the molecule, which resolves earlier disagreements regarding measurements and calculations of the relaxation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp408073d | DOI Listing |
J Colloid Interface Sci
January 2025
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:
Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.
View Article and Find Full Text PDFDalton Trans
January 2025
Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.
Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
Vanadium oxide (VO) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO under low perturbation conditions.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2025
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
The stomach is responsible for physically and chemically processing the ingested meal before controlled emptying into the duodenum through the pyloric sphincter. An incompetent pylorus allows reflux from the duodenum back into the stomach, and if the amount of reflux is large enough, it could alter the low pH environment of the stomach and erode the mucosal lining of the lumen. In some cases, the regurgitated contents can also reach the esophagus leading to additional complications.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Science Institute and Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland.
Understanding the ultrafast vibrational relaxation following photoexcitation of molecules in a condensed phase is essential to predict the outcome and improve the efficiency of photoinduced molecular processes. Here, the vibrational decoherence and energy relaxation of a binuclear complex, [Pt2(P2O5H2)4]4- (PtPOP), upon electronic excitation in liquid water and acetonitrile are investigated through direct adiabatic dynamics simulations. A quantum mechanics/molecular mechanics (QM/MM) scheme is used where the excited state of the complex is modeled with orbital-optimized density functional calculations while solvent molecules are described using potential energy functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!