Background And Objective: Because of their aggressiveness, brain tumors can lead to death within a short time after diagnosis. Optical techniques such as Raman spectroscopy may be a technique of choice for in situ tumor diagnosis, with potential use in determining tumor margins during surgery because of its ability to identify biochemical changes between normal and tumor brain tissues quickly and without tissue destruction.

Methods: In this work, fragments of brain tumor (glioblastoma, medulloblastoma, and meningioma) and normal tissues (cerebellum and meninges) were obtained from excisional intracranial surgery and from autopsies, respectively. Raman spectra (dispersive spectrometer, 830 nm 350 mW, 50 sec accumulation, total 172 spectra) were obtained in vitro on these fragments. It has been developed as a model to discriminate between the spectra of normal tissue and tumors based on the scores of principal component analysis (PCA) and Euclidean distance.

Results: ANOVA indicated that the scores of PC2 and PC3 show differences between normal and tumor groups (p<0.05) which could be employed in a discrimination model. PC2 was able to discriminate glioblastoma from the other tumors and from normal tissues, showing featured peaks of lipids/phospholipids and cholesterol. PC3 discriminated medulloblastoma and meningioma from normal tissues, with the most intense spectral features of proteins. PC3 also discriminated normal tissues (meninges and cerebellum) by the presence of cholesterol peaks. Results indicated a sensitivity and specificity of 97.4% and 100%, respectively, for this in vitro diagnosis of brain tumor.

Conclusions: The PCA/Euclidean distance model was effective in differentiating tumor from normal spectra, regardless of the type of tissue (meninges or cerebellum).

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2012.3460DOI Listing

Publication Analysis

Top Keywords

brain tissues
8
raman spectroscopy
8
normal tumor
8
normal
5
tumor
5
discriminating neoplastic
4
neoplastic normal
4
brain
4
normal brain
4
tissues vitro
4

Similar Publications

Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification.

View Article and Find Full Text PDF

Introduction: The intricate interplay between organs can give rise to a multitude of physiological conditions. Disruptions such as inflammation or tissue damage can precipitate the development of chronic diseases such as tumors or diabetes mellitus (DM). While both lung cancer and DM are the consequences of disruptions in homeostasis, the relationship between them is intricate.

View Article and Find Full Text PDF

The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data.

View Article and Find Full Text PDF

The fluorescent imaging of pathologically accumulated β-amyloid (Aβ) proteins is of significant importance to the diagnosis of Alzheimer's disease (AD). In the paper, we prepared two new NIR probes, NIR-1 and NIR-2, through hydrophilic modification of introducing water-soluble bioactive groups such as polyethylene glycol (PEG) and morpholine to tune in vivo pharmacokinetics for specific detection of soluble and insoluble Aβ species. The in vitro assessments confirm that both NIR-1 and NIR-2 display strong near-infrared (NIR) fluorescence (FL) enhancement upon association with Aβ42 monomers, oligomers or aggregates (λem > 670 nm) and show high sensitive, rapid and selective response towards Aβ42 species.

View Article and Find Full Text PDF

Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!