Background: Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans.
Methodology/principal Findings: Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice.
Conclusion/significance: These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826709 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079474 | PLOS |
J Environ Sci (China)
July 2025
Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
Urban rivers are one of the main water sources for local residents. However, the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers, which posed harmful impact on human health and ecosystem. In this study, 134 sediment samples were collected from urban rivers in a typical Economic and Technological Development Zone (ETDZ) to evaluate the contamination status, ecological risk, biotoxicity, and potential source of 8 heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), plumbum (Pb), and zinc (Zn).
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:
Arsenic-contaminated groundwater is widely used in agriculture. To meet the increasing demand for safe water in agriculture, an efficient and cost-effective method for As removal from groundwater is urgently needed. We hypothesized that Fe (oxyhydr)oxide (FeOOH) minerals precipitated in situ from indigenous Fe in groundwater may immobilize As, providing a solution for safely using As-contaminated groundwater in irrigation.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center of Sustainable Environmental Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. Electronic address:
In this study, we investigated the efficiency of a bentonite/iron-coated sand (B/ICS) stabilizer in reducing the mobility and accumulation of heavy metals (Pb, Cd, Zn, and As) in contaminated sediments. Bentonite is effective in the adsorption of heavy metals, while ICS is effective in the adsorption of As. When combined, the stabilizer can be applied to mixed-contaminated sediments containing both heavy metals and As.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Toxicology, Anhui Medical University, Hefei, China. Electronic address:
Increasing epidemiological evidence has proved that early-life exposure to inorganic arsenic (As) elevates the risks of childhood asthma. The present research aimed to explore susceptibility of respiratory As exposure to allergic asthma in a mouse model. BALB/c mice on postnatal day (PND) 28 were exposed to ddHO or NaAsO aerosol for 4 hours daily over 5 consecutive weeks via respiratory tract.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.
Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!