Transgenic mice were produced that carried in their germlines rearranged kappa and/or mu genes with V kappa and VH regions from the myeloma MOPC-167 kappa and H genes, which encode anti-PC antibody. The mu genes contain either a complete gene, including the membrane terminus (mu genes), or genes in which this terminus is deleted and only the secreted terminus remains (mu delta mem genes). The mu gene without membrane terminus is expressed at as high a level as the mu gene with the complete 3' end, suggesting that this terminus is not required for chromatin activation of the mu locus or for stability of the mRNA. The transgenes are expressed only in lymphoid organs. In contrast to our previous studies with MOPC-21 kappa transgenic mice, the mu transgene is transcribed in T lymphocytes as well as B lymphocytes. Thymocytes from mu and kappa mu transgenic mice display elevated levels of M-167 mu RNA and do not show elevated levels of kappa RNA, even though higher than normal levels of M-167 kappa RNA are detected in the spleen of these mice. Approximately 60% of thymocytes of mu transgenic mice produce cytoplasmic mu protein. However, despite a large amount of mu RNA of the membrane form, mu protein cannot be detected on the surface of T cells, perhaps because it cannot associate with T cell receptor alpha or beta chains. Mice with the complete mu transgene produce not only the mu transgenic mRNA but also considerably increased amounts of kappa RNA encoded by endogenous MOPC-167 like kappa genes. This suggests that B cells are selected by antigen (PC) if they coexpress the mu transgene and appropriate anti-PC endogenous kappa genes. Mice with the mu delta mem gene, however, do not express detectable levels of the endogenous MOPC-167 kappa mRNA. Like the complete mu transgene, the M-167 kappa transgene also causes amplification of endogenous MOPC-167 related immunoglobulins; mice with the kappa transgene have increased amounts of endogenous MOPC-167-like mu or alpha or gamma in the spleen, all of the secreted form. Implications for the regulation of immunoglobulin gene expression and B cell triggering are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2188231 | PMC |
http://dx.doi.org/10.1084/jem.164.2.627 | DOI Listing |
INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030.
The effects of T cell differentiation arising from immune checkpoint inhibition targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on the immunological memory response remain unclear. Our investigation into the effects of anti-CTLA-4 and anti-PD-1 on memory T cell formation in mice reveals that memory T cells generated by anti-CTLA-4 exhibit greater expansion, cytokine production, and antitumor activity than those from anti-PD-1. Notably, anti-CTLA-4 preserves more T cell factor-1 (TCF-1)+ T cells during priming, while anti-PD-1 leads to more thymocyte selection-associated high mobility group box (TOX)+ T cells.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Geriatric Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China.
The main goal of this investigation is to find out how solute carrier family 27 member 3 (SLC27A3) is expressed in the lung tissue of mice with chronic obstructive pulmonary disease (COPD), and how it relates to lung function. A model of COPD was established by exposing organisms to cigarette smoke, followed by investigating the role of SLC27A3 in COPD through experiments conducted both in living organisms and in laboratory settings. Knockout mice lacking SLC27A3 were produced through siRNA transfection to investigate lung function and inflammatory response, using methods such as hematoxylin-eosin staining and enzyme-linked immunosorbent assay.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFTransgenic Res
January 2025
Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!