Background: MicroRNAs (miRNAs) are small noncoding RNAs which play crucial role in response to the adverse biotic and abiotic stress conditions at the post transcriptional level. The functions of the miRNAs are generally based on complementarity to their target region.
Results: We used the online tool psRNA Target for the identification of submergence responsive miRNA using the gene expression profile related to the submergence condition. We wrote a perl script for the prediction of miRNA target gene. The position based feature of the script increases the overall specificity of the program. Our perl script performed well on the genomic data of Oryza sativa and produced significant results with their positions. These results were analyzed on the basis of complementarity and the statistical scores are used to find out the most probable binding regions. These predicted binding regions are aligned with their respective miRNAs to find out the consensus sequence. We scored the alignment using a position dependent, mismatch penalty system. We also identified the rate of conservation of bases at a particular position for all the predicted binding regions and it was found that all the predicted binding regions maintain above 70% rate of conservation of bases.
Conclusion: Our approach provides a novel framework for screening the genome of Oryza sativa. It can be broadly applied to identify complementarity specific miRNA targets computationally by doing a little modification of the script depending on the type of the miRNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819571 | PMC |
http://dx.doi.org/10.6026/97320630009858 | DOI Listing |
BMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology, School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA. Electronic address:
Sarcoplasmic/endoplasmic reticulum Ca-ATPase1 (SERCA1) is responsible for the clearance of cytosolic Ca in skeletal muscle. Due to its vital importance in regulating Ca homeostasis, the regulation of SERCA1 has been intensively studied. Small ankyrin 1 (sAnk1, Ank1.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:
The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!