We currently face an alarming resurgence in infectious diseases characterized by antimicrobial resistance and therapeutic failure. This has generated the urgent need of developing new therapeutic approaches that include agents with nontraditional modes of action. A recent interest focused on approaches based on our natural immune defenses, especially on peptides that combine innate antimicrobial activity against diverse pathogens and immunoregulatory functions. In this study, to our knowledge, we describe for the first time the antimicrobial activity of the neuropeptide urocortin II (UCNII) against a panel of Gram-positive and Gram-negative bacteria and tropical parasites of the genus Leishmania. Importantly, this cytotoxicity was selective for pathogens, because UCNII did not affect mammalian cell viability. Structurally, UCNII has a cationic and amphipathic design that resembles antimicrobial peptides. Using mutants and UCNII fragments, we determined the structural requirements for the interaction between the peptide and the surface of pathogen. Following its binding to pathogen, UCNII caused cell death through different membrane-disrupting mechanisms that involve aggregation and membrane depolarization in bacteria and pore formation in Leishmania. Noteworthily, UCNII killed the infective form of Leishmania major even inside the infected macrophages. Consequently, UCNII prevented mortality caused by polymicrobial sepsis and ameliorated pathological signs of cutaneous leishmaniasis. Besides its presence in body physical and mucosal barriers, we found that innate immune cells produce UCNII in response to infections. Therefore, UCNII could be considered as an ancient highly-conserved host peptide involved in the natural antimicrobial defense and emerge as an attractive alternative to current treatments for microbial disorders with associated drug resistances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953160 | PMC |
http://dx.doi.org/10.4049/jimmunol.1301921 | DOI Listing |
Am J Physiol Heart Circ Physiol
March 2014
Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois;
Urocortin II (UcnII), a cardioactive peptide with beneficial effects in normal and failing hearts, is also arrhythmogenic and prohypertrophic. We demonstrated that cardiac effects are mediated by a phosphatidylinositol-3 kinase (PI3K)/Akt kinase (Akt)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathways. Nuclear factor of activated T-cells (NFAT) transcription factors play a key role in the regulation of gene expression in cardiac development, maintenance of an adult differentiated cardiac phenotype, and remodeling processes in cardiac hypertrophy and heart failure (HF).
View Article and Find Full Text PDFJ Immunol
December 2013
Institute of Parasitology and Biomedicine "López-Neyra," Spanish National Research Council, Granada 18016, Spain;
We currently face an alarming resurgence in infectious diseases characterized by antimicrobial resistance and therapeutic failure. This has generated the urgent need of developing new therapeutic approaches that include agents with nontraditional modes of action. A recent interest focused on approaches based on our natural immune defenses, especially on peptides that combine innate antimicrobial activity against diverse pathogens and immunoregulatory functions.
View Article and Find Full Text PDFNeuropeptides
April 2012
Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, PR China.
Corticotropin-releasing hormone (CRH) family peptides as well as their receptors have been shown to exhibit various functions in hippocampus. However, effects of CRH receptors activation on collapsin response mediator protein 3 (CRMP3), the key protein for dendrite outgrowth and cell apoptosis, remain unclear. In the present study, we determined the effects of CRHR1 and CRHR2 on CRMP3 expression in cultured hippocampal neurons.
View Article and Find Full Text PDFThe corticotropin-releasing hormone (CRH) family of neuropeptides includes CRH (a 41 amino acid hypothalamic peptide) and urocortin. Corticotropin-releasing factor (CRF), a peptide first isolated from mammalian, plays an important role in the regulation of the pituitary-adrenal axis, and in endocrine, autonomic, immune and behavioral responses to stress. In this study we cloned rat urocortin II (UCNII) cDNA from rat mid-brain by RT-PCR.
View Article and Find Full Text PDFEndocrinology
June 2008
Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, People's Republic of China.
Prostaglandin (PG) production by intrauterine tissues plays a key part in the control of pregnancy and parturition. The present study was to investigate the role of placenta-derived CRH and CRH-related peptides in the regulation of PG synthesis and metabolism. We found that placental trophoblasts expressed both CRH-R1 and CRH-R2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!